We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the existence of travelling wave solutions and the spreading speed for the solutions of an age-structured epidemic model with nonlocal diffusion. Our proofs make use of the comparison principles both to construct suitable sub/super-solutions and to prove the regularity of travelling wave solutions.
We study the Cauchy problem on the real line for the nonlocal Fisher-KPP equation in one spatial dimension,
\begin{equation*} u_t = D u_{xx} + u(1-\phi *u), \end{equation*}
where $\phi *u$ is a spatial convolution with the top hat kernel, $\phi (y) \equiv H\left (\frac{1}{4}-y^2\right )$. After observing that the problem is globally well-posed, we demonstrate that positive, spatially periodic solutions bifurcate from the spatially uniform steady state solution $u=1$ as the diffusivity, $D$, decreases through $\Delta _1 \approx 0.00297$ (the exact value is determined in Section 3). We explicitly construct these spatially periodic solutions as uniformly valid asymptotic approximations for $D \ll 1$, over one wavelength, via the method of matched asymptotic expansions. These consist, at leading order, of regularly spaced, compactly supported regions with width of $O(1)$ where $u=O(1)$, separated by regions where $u$ is exponentially small at leading order as $D \to 0^+$. From numerical solutions, we find that for $D \geq \Delta _1$, permanent form travelling waves, with minimum wavespeed, $2 \sqrt{D}$, are generated, whilst for $0 \lt D \lt \Delta _1$, the wavefronts generated separate the regions where $u=0$ from a region where a steady periodic solution is created via a distinct periodic shedding mechanism acting immediately to the rear of the advancing front, with this mechanism becoming more pronounced with decreasing $D$. The structure of these transitional travelling wave forms is examined in some detail.
This article offers an advanced and novel investigation into the intricate propagation dynamics of the Belousov–Zhabotinsky system with non-local delayed interaction, which exhibits dynamical transition structure from bistable to monostable. We first solved the enduring open problem concerning the existence, uniqueness and the speed sign of the bistable travelling waves. In the monostable case, we developed and derived new results for the minimal wave speed selection, which, as an application, further improved the existing investigations on pushed and pulled wavefronts. Our results can provide new estimate to the minimal speed as well as to the determinacy of the transition parameters. Moreover, these results can be directly applied to standard localised models and delayed reaction diffusion models by choosing appropriate kernel functions.
This work describes a hyperbolic model for cell-cell repulsion with population dynamics. We consider the pressure produced by a population of cells to describe their motion. We assume that cells try to avoid crowded areas and prefer locally empty spaces far away from the carrying capacity. Here, our main goal is to prove the existence of travelling waves with continuous profiles. This article complements our previous results about sharp travelling waves. We conclude the paper with numerical simulations of the PDE problem, illustrating such a result. An application to wound healing also illustrates the importance of travelling waves with a continuous and discontinuous profile.
We formulate haptotaxis models of cancer invasion wherein the infiltrating cancer cells can occupy a spectrum of states in phenotype space, ranging from ‘fully mesenchymal’ to ‘fully epithelial’. The more mesenchymal cells are those that display stronger haptotaxis responses and have greater capacity to modify the extracellular matrix (ECM) through enhanced secretion of matrix-degrading enzymes (MDEs). However, as a trade-off, they have lower proliferative capacity than the more epithelial cells. The framework is multiscale in that we start with an individual-based model that tracks the dynamics of single cells, which is based on a branching random walk over a lattice representing both physical and phenotype space. We formally derive the corresponding continuum model, which takes the form of a coupled system comprising a partial integro-differential equation for the local cell population density function, a partial differential equation for the MDE concentration and an infinite-dimensional ordinary differential equation for the ECM density. Despite the intricacy of the model, we show, through formal asymptotic techniques, that for certain parameter regimes it is possible to carry out a detailed travelling wave analysis and obtain invading fronts with spatial structuring of phenotypes. Precisely, the most mesenchymal cells dominate the leading edge of the invasion wave and the most epithelial (and most proliferative) dominate the rear, representing a bulk tumour population. As such, the model recapitulates similar observations into a front to back structuring of invasion waves into leader-type and follower-type cells, witnessed in an increasing number of experimental studies over recent years.
In this work, we carry out an analytical and numerical investigation of travelling waves representing arced vegetation patterns on sloped terrains. These patterns are reported to appear also in ecosystems which are not water deprived; therefore, we study the hypothesis that their appearance is due to plant–soil negative feedback, namely due to biomass-(auto)toxicity interactions.
To this aim, we introduce a reaction-diffusion-advection model describing the dynamics of vegetation biomass and toxicity which includes the effect of sloped terrains on the spatial distribution of these variables. Our analytical investigation shows the absence of Turing patterns, whereas travelling waves (moving uphill in the slope direction) emerge. Investigating the corresponding dispersion relation, we provide an analytic expression for the asymptotic speed of the wave. Numerical simulations not only just confirm this analytical quantity but also reveal the impact of toxicity on the structure of the emerging travelling pattern.
Our analysis represents a further step in understanding the mechanisms behind relevant plants‘ spatial distributions observed in real life. In particular, since vegetation patterns (both stationary and transient) are known to play a crucial role in determining the underlying ecosystems’ resilience, the framework presented here allows us to better understand the emergence of such structures to a larger variety of ecological scenarios and hence improve the relative strategies to ensure the ecosystems’ resilience.
For a perturbed generalized Korteweg–de Vries equation with a distributed delay, we prove the existence of both periodic and solitary waves by using the geometric singular perturbation theory and the Melnikov method. We further obtain monotonicity and boundedness of the speed of the periodic wave with respect to the total energy of the unperturbed system. Finally, we establish a relation between the wave speed and the wavelength.
Using one-dimensional branching Brownian motion in a periodic environment, we give probabilistic proofs of the asymptotics and uniqueness of pulsating traveling waves of the Fisher–Kolmogorov–Petrovskii–Piskounov (F-KPP) equation in a periodic environment. This paper is a sequel to ‘Branching Brownian motion in a periodic environment and existence of pulsating travelling waves’ (Ren et al., 2022), in which we proved the existence of the pulsating traveling waves in the supercritical and critical cases, using the limits of the additive and derivative martingales of branching Brownian motion in a periodic environment.
We consider a model for the dynamics of growing cell populations with heterogeneous mobility and proliferation rate. The cell phenotypic state is described by a continuous structuring variable and the evolution of the local cell population density function (i.e. the cell phenotypic distribution at each spatial position) is governed by a non-local advection–reaction–diffusion equation. We report on the results of numerical simulations showing that, in the case where the cell mobility is bounded, compactly supported travelling fronts emerge. More mobile phenotypic variants occupy the front edge, whereas more proliferative phenotypic variants are selected at the back of the front. In order to explain such numerical results, we carry out formal asymptotic analysis of the model equation using a Hamilton–Jacobi approach. In summary, we show that the locally dominant phenotypic trait (i.e. the maximum point of the local cell population density function along the phenotypic dimension) satisfies a generalised Burgers’ equation with source term, we construct travelling-front solutions of such transport equation and characterise the corresponding minimal speed. Moreover, we show that, when the cell mobility is unbounded, front edge acceleration and formation of stretching fronts may occur. We briefly discuss the implications of our results in the context of glioma growth.
Based on the fact that the incubation periods of epidemic disease in asymptomatically infected and infected individuals are inevitable and different, we propose a diffusive susceptible, asymptomatically infected, symptomatically infected and vaccinated (SAIV) epidemic model with delays in this paper. To see whether epidemic disease can propagate spatially with a constant speed, we focus on the travelling wave solution for this model. When the basic reproduction number of the corresponding spatial-homogenous delayed differential system is greater than one and the wave speed is greater than or equal to the critical speed, we prove that this model admits nontrivial positive travelling wave solutions. Our theoretical results are of benefit to the prevention and control of epidemic.
We propose and investigate a stage-structured SLIRM epidemic model with latent period in a spatially continuous habitat. We first show the existence of semi-travelling waves that connect the unstable disease-free equilibrium as the wave coordinate goes to − ∞, provided that the basic reproduction number $\mathcal {R}_0 > 1$ and $c > c_*$ for some positive number $c_*$. We then use a combination of asymptotic estimates, Laplace transform and Cauchy's integral theorem to show the persistence of semi-travelling waves. Based on the persistent property, we construct a Lyapunov functional to prove the convergence of the semi-travelling wave to an endemic (positive) equilibrium as the wave coordinate goes to + ∞. In addition, by the Laplace transform technique, the non-existence of bounded semi-travelling wave is also proved when $\mathcal {R}_0 > 1$ and $0 < c < c_*$. This indicates that $c_*$ is indeed the minimum wave speed. Finally simulations are given to illustrate the evolution of profiles.
We prove that any simple planar travelling wave solution to the membrane equation in spatial dimension $d\geqslant 3$ with bounded spatial extent is globally nonlinearly stable under sufficiently small compactly supported perturbations, where the smallness depends on the size of the support of the perturbation as well as on the initial travelling wave profile. The main novelty of the argument is the lack of higher order peeling in our vector-field-based method. In particular, the higher order energies (in fact, all energies at order $2$ or higher) are allowed to grow polynomially (but in a controlled way) in time. This is in contrast with classical global stability arguments, where only the ‘top’ order energies used in the bootstrap argument exhibit growth, and reflects the fact that the background travelling wave solution has ‘infinite energy’ and the coefficients of the perturbation equation are not asymptotically Lorentz invariant. Nonetheless, we can prove that the perturbation converges to zero in $C^{2}$ by carefully analysing the nonlinear interactions and exposing a certain ‘vestigial’ null structure in the equations.
This paper is concerned with the existence results for generalized transition waves of space periodic and time heterogeneous lattice Fisher-KPP equations. By constructing appropriate subsolutions and supersolutions, we show that there is a critical wave speed such that a transition wave solution exists as soon as the least mean of wave speed is above this critical speed. Moreover, the critical speed we construct is proved to be minimal in some particular cases, such as space-time periodic or space independent.
The present paper is devoted to the study of the existence, the uniqueness and the stability of transition fronts of non-local dispersal equations in time heterogeneous media of bistable type under the unbalanced condition. We first study space non-increasing transition fronts and prove various important qualitative properties, including uniform steepness, stability, uniform stability and exponential decaying estimates. Then, we show that any transition front, after certain space shift, coincides with a space non-increasing transition front (if it exists), which implies the uniqueness, up-to-space shifts and monotonicity of transition fronts provided that a space non-increasing transition front exists. Moreover, we show that a transition front must be a periodic travelling front in periodic media and asymptotic speeds of transition fronts exist in uniquely ergodic media. Finally, we prove the existence of space non-increasing transition fronts, whose proof does not need the unbalanced condition.
We prove the existence of multi-soliton and kink-multi-soliton solutions of the Euler–Korteweg system in dimension one. Such solutions behave asymptotically in time like several travelling waves far away from each other. A kink is a travelling wave with different limits at ±∞. The main assumption is the linear stability of the solitons, and we prove that this assumption is satisfied at least in the transonic limit. The proof relies on a classical approach based on energy estimates and a compactness argument.
The purpose of this work is to investigate the properties of spreading speeds for the monotone semiflows. According to the fundamental work of Liang and Zhao [(2007) Comm. Pure Appl. Math.60, 1–40], the spreading speeds of the monotone semiflows can be derived via the principal eigenvalue of linear operators relating to the semiflows. In this paper, we establish a general method to analyse the sign and the continuity of the spreading speeds. Then we consider a limiting case that admits no spreading phenomenon. The results can be applied to the model of cellular neural networks (CNNs). In this model, we find the rule which determines the propagating phenomenon by parameters.
We consider the stability of nonlinear travelling waves in a class of activator-inhibitor systems. The eigenvalue equation arising from linearizing about the wave is seen to preserve the manifold of Lagrangian planes for a nonstandard symplectic form. This allows us to define a Maslov index for the wave corresponding to the spatial evolution of the unstable bundle. We formulate the Evans function for the eigenvalue problem and show that the parity of the Maslov index determines the sign of the derivative of the Evans function at the origin. The connection between the Evans function and the Maslov index is established by a ‘detection form,’ which identifies conjugate points for the curve of Lagrangian planes.
The main purpose of this paper is to study the existence of travelling waves with a critical speed for an influenza model with treatment. By using some analysis techniques that involve super-critical speeds and an approximation method, the existence of travelling waves with the critical speed is proved.
We consider a broad class of systems of nonlinear integro-differential equations posed on the real line that arise as Euler–Lagrange equations to energies involving nonlinear nonlocal interactions. Although these equations are not readily cast as dynamical systems, we develop a calculus that yields a natural Hamiltonian formalism. In particular, we formulate Noether’s theorem in this context, identify a degenerate symplectic structure, and derive Hamiltonian differential equations on finite-dimensional center manifolds when those exist. Our formalism yields new natural conserved quantities. For Euler–Lagrange equations arising as traveling-wave equations in gradient flows, we identify Lyapunov functions. We provide several applications to pattern-forming systems including neural field and phase separation problems.
In this paper, we extend and complement previous works about propagation in kinetic reaction–transport equations. The model we study describes particles moving according to a velocity-jump process, and proliferating according to a reaction term of monostable type. We focus on the case of bounded velocities, having dimension higher than one. We extend previous results obtained by the first author with Calvez and Nadin in dimension one. We study the large time/large-scale hyperbolic limit via an Hamilton–Jacobi framework together with the half-relaxed limits method. We deduce spreading results and the existence of travelling wave solutions. A crucial difference with the mono-dimensional case is the resolution of the spectral problem at the edge of the front, that yields potential singular velocity distributions. As a consequence, the minimal speed of propagation may not be determined by a first-order condition.