Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:46:45.905Z Has data issue: false hasContentIssue false

Wave propagation in a diffusive SAIV epidemic model with time delays

Published online by Cambridge University Press:  16 June 2021

JIANGBO ZHOU*
Affiliation:
School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu212013, P. R. China emails: ujszjb@126.com; l511309259@126.com; wjd19871022@126.com; tianlx@ujs.edu.cn
JINGHUAN LI
Affiliation:
School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu212013, P. R. China emails: ujszjb@126.com; l511309259@126.com; wjd19871022@126.com; tianlx@ujs.edu.cn
JINGDONG WEI*
Affiliation:
School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu212013, P. R. China emails: ujszjb@126.com; l511309259@126.com; wjd19871022@126.com; tianlx@ujs.edu.cn
LIXIN TIAN
Affiliation:
School of Mathematical Sciences, Jiangsu University, Zhenjiang, Jiangsu212013, P. R. China emails: ujszjb@126.com; l511309259@126.com; wjd19871022@126.com; tianlx@ujs.edu.cn School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu210046, P. R. China email: tianlixin@njnu.edu.cn
*
*Joint corresponding authors
*Joint corresponding authors

Abstract

Based on the fact that the incubation periods of epidemic disease in asymptomatically infected and infected individuals are inevitable and different, we propose a diffusive susceptible, asymptomatically infected, symptomatically infected and vaccinated (SAIV) epidemic model with delays in this paper. To see whether epidemic disease can propagate spatially with a constant speed, we focus on the travelling wave solution for this model. When the basic reproduction number of the corresponding spatial-homogenous delayed differential system is greater than one and the wave speed is greater than or equal to the critical speed, we prove that this model admits nontrivial positive travelling wave solutions. Our theoretical results are of benefit to the prevention and control of epidemic.

Type
Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ai, S. & Albashaireh, R. (2014) Traveling waves in spatial SIRS models. J. Dyn. Diff. Equ. 26, 143164.CrossRefGoogle ScholarPubMed
Bai, Z. & Wu, S. (2015) Traveling waves in a delayed SIR epidemic model with nonlinear incidence. Appl. Math. Comput. 263, 221232.Google Scholar
Bowman, C. S., Arino, J. & Moghadas, S. M. (2011) Evaluation of vaccination strategies during pandemic outbreaks. Math. Biosci. Eng. 8, 113122.Google ScholarPubMed
Cheng, H. & Yuan, R. (2015) Traveling wave solutions for a nonlocal dispersal Kermack-Mckendrick epidemic model with spatio-temporal delay. Sci. Sin. Math. 45, 765788.CrossRefGoogle Scholar
Deng, D. & Zhang, D. (2019) Existence of travelling waves with the critical speed for an influenza model with treatment. Euro. J. Appl. Math. 31, 232245.CrossRefGoogle Scholar
Ding, W., Huang, W. & Kansaka, S. (2013) Traveling wave solutions for a diffusive SIS epidemic model. Discrete Contin. Dyn. Syst. Ser. B 18, 12911304.Google Scholar
Djebali, S. (2001) Traveling wave solutions to a reaction-diffusion system arising in epidemiology. Nonlinear Anal.-Real 2, 417442.CrossRefGoogle Scholar
Ducrot, A. & Langlais, M. (2012) Qualitative analysis of traveling wave solutions for the SI model with vertical transmission. Commun. Pur. Appl. Anal. 11, 97113.CrossRefGoogle Scholar
Ducrot, A. & Magal, P. (2011) Travelling wave solutions for an infection-age structured epidemic model with external supplies. Nonlinearity 24, 28912911.CrossRefGoogle Scholar
Ducrot, A., Magal, P. & Ruan, S. (2010) Travelling wave solutions in multigroup age-structured epidemic models. Arch. Ration. Mech. An. 195, 311331.CrossRefGoogle Scholar
Fu, S. (2016) Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435, 2037.CrossRefGoogle Scholar
Fu, S., Guo, J. & Wu, C. (2016) Traveling wave solutions for a discrete diffusive epidemic model. J. Nonlinear Convex Anal. 17, 17391751.Google Scholar
He, G., Wang, J. & Huang, G. (2019) Wave propagation of a diffusive epidemic model with latency and vaccination. Appl. Anal. doi: http://doi.org/10.1080/00036811.2019.167286810.1080/00036811.2019.1672868.Google Scholar
He, J. & Tsai, J. (2019) Traveling waves in the Kermack-Mckendrick epidemic model with latent period. Z. Angew. Math. Phys. 70, 27.CrossRefGoogle Scholar
Hsu, C. & Yang, T. (2013) Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models. Nonlinearity 26 121139.CrossRefGoogle Scholar
Li, W., Lin, G., Ma, C. & Yang, F. (2014) Traveling wave solutions of a nonlocal delay SIR model without outbreak threshold. Discrete Contin. Dyn. Syst. Ser. B 19, 467484.Google Scholar
Li, Y., Li, W. & Lin, G. (2015) Traveling waves of a delayed diffusive SIR epidemic model. Commum. Pure. Appl. Anal. 14, 10011022.CrossRefGoogle Scholar
Li, Y., Li, W. & Yang, F. (2014) Traveling waves for a nonlocal dispersal SIR model with delay and external supplies. Appl. Math. Comput. 247, 723740.Google Scholar
Liu, X., Takeuchi, Y. & Iwami, S. (2008) SVIR epidemic models with vaccination strategies. J. Theor. Biol. 253, 111.CrossRefGoogle ScholarPubMed
Rizk, L. A., Burie, J. B. & Ducrot, A. (2019) Travelling wave solutions for a non-local evolutionary-epidemic system. J. Differ. Equations 267, 14671509.CrossRefGoogle Scholar
San, X. & Wang, Z. (2019) Traveling waves for a two-group epidemic model with latent period in a patchy environment. J. Math. Anal. Appl. 475, 15021531.CrossRefGoogle Scholar
Tian, B. & Yuan, R. (2017) Traveling waves for a diffusive SEIR epidemic model with non-local reaction and with standard incidences. Nonlinear Anal.-Real 37, 162181.CrossRefGoogle Scholar
Wang, H. & Wang, X. (2016) Traveling wave phenomena in a Kermack-McKendrick SIR model. J. Dyn. Differ. Equ. 28, 143166.CrossRefGoogle Scholar
Wang, X., Wang, H. & Wu, J. (2012) Traveling waves of diffusive predator-prey systems: disease outbreak propagation. Discrete Contin. Dyn. Syst. Ser. A 32, 33033324.CrossRefGoogle Scholar
Wang, Z. & Wu, J. (2010) Traveling waves of a diffusive Kermack-McKendrick epidemic model with nonlocal delayed transmission. P. Roy. Soc. A-Math. Phy. 466, 237261.Google Scholar
Wang, Z., Zhang, L. & Zhao, X. (2018) Time Periodic Traveling waves for a periodic and diffusive SIR epidemic model. J. Dyn. Differ. Equ. 30, 379403.CrossRefGoogle Scholar
Wei, J., Zhou, J., Zhen, Z. & Tian, L. (2019) Super-critical and critical traveling waves in a two-component lattice dynamical model with discrete delay. Appl. Math. Comput. 363, 124621.Google Scholar
Wei, J., Zhou, J., Zhen, Z. & Tian, L. (2020) Super-critical and critical traveling waves in a three-component delayed disease system with mixed diffusion. J. Comput. Appl. Math. 367, 112451.CrossRefGoogle Scholar
Wu, C. (2017) Existence of traveling waves with the critical speed for discrete diffusive epidemic model. J. Differ. Equations 262, 272282.CrossRefGoogle Scholar
Wu, S. & Hsu, C. (2015) Existence of entire solutions for delayed monostable epidemic models. Trans. Amer. Math. Soc. 368, 60336062.CrossRefGoogle Scholar
Xu, Z. (2014) Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period. Nonlinear Anal. 111, 6681.CrossRefGoogle Scholar
Xu, Z. (2017) Traveling waves in an SEIR epidemic model with the variable total population. Discrete Contin. Dyn. Syst. Ser. B 21, 37233742.CrossRefGoogle Scholar
Xu, Z. & Ai, C. (2016) Traveling waves in a diffusive influenza epidemic model with vaccination. Appl. Math. Model. 40, 72657280.CrossRefGoogle Scholar
Xu, Z. & Guo, T. (2019) Traveling waves in a diffusive epidemic model with criss-cross mechanism. Math. Method. Appl. Sci. 42, 24752933.CrossRefGoogle Scholar
Yang, F. & Li, W. (2018) Traveling waves in a nonlocal dispersal SIR model with critical wave speed. J. Math. Anal. Appl. 458, 11311146.CrossRefGoogle Scholar
Yang, F., Li, W. & Wang, J. (2020) Wave propagation for a class of non-local dispersal non-cooperative systems. P. Royal Soc. Edinb. A, 150, 19651997.CrossRefGoogle Scholar
Yang, F., Li, W. & Wang, Z. (2015) Traveling waves in a nonlocal dispersal SIR epidemic model. Nonlinear Anal.-Real. 23, 129147.CrossRefGoogle Scholar
Yuzo, H. & Bilal, I. (1994) Existence of traveling waves with any positive speed for a diffusive epidemic model. Nonlinear World 1, 277290.Google Scholar
Zhang, L., Wang, Z. & Zhao, X. (2020) Time periodic traveling wave solutions for a Kermack-McKendrick epidemic model with diffusion and seasonality. J. Evol. Equ. 20, 12091509.CrossRefGoogle Scholar
Zhang, Q. & Wu, S. (2019) Wave propagation of a discrete SIR epidemic model with a saturated incidence rate. Int. J. Biomath. 12, 1950029.CrossRefGoogle Scholar
Zhang, R. & Liu, S. (2019) Traveling waves for SVIR epidemic model with nonlocal dispersal. Math. Biosci. Eng. 16, 16541682.CrossRefGoogle ScholarPubMed
Zhang, T., Wang, W. & Wang, K. (2016) Minimal wave speed for a class of non-cooperative diffusion-reaction system. J. Differ. Equations 260, 27632791.CrossRefGoogle Scholar
Zhang, T. & Wang, W. (2014) Existence of traveling wave solutions for influenza model with treatment. J. Math. Anal. Appl. 419, 469495.CrossRefGoogle Scholar
Zhao, L., Wang, Z. & Ruan, S. (2017) Traveling wave solutions in a two-group epidemic model with latent period. Nonlinearity 30, 12871325.CrossRefGoogle Scholar
Zhao, L., Wang, Z. & Ruan, S. (2018) Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. J. Math. Biol. 1, 145.Google Scholar
Zhen, Z., Wei, J., Tian, L., Zhou, J. & Chen, W. (2018) Wave propagation in a diffusive SIR epidemic model with spatiotemporal delay. Math. Method. Appl. Sci. 41, 70747098.CrossRefGoogle Scholar
Zhen, Z., Wei, J., Zhou, J. & Tian, L. (2018) Wave propagation in a nonlocal diffusion epidemic model with nonlocal delayed effects. Appl. Math. Comput. 339, 1537.Google Scholar
Zhou, J., Song, L., & Wei, J. (2020) Mixed types of waves in a discrete diffusive epidemic model with nonlinear incidence and time delay. J. Differ. Equations 268, 44914524.CrossRefGoogle Scholar
Zhou, J., Song, L., Wei, J. & Xu, H. (2019) Critical traveling waves in a diffusive disease model. J. Math. Anal. Appl. 476, 522538.CrossRefGoogle Scholar
Zhou, J., Xu, J., Wei, J. & Xu, H. (2018) Existence and non-existence of traveling wave solutions for a nonlocal dispersal SIR epidemic model with nonlinear incidence rate. Nonlinear Anal.-Real 41, 204231.CrossRefGoogle Scholar
Zhou, K., Han, M. & Wang, Q. (2016) Traveling wave solutions for a delayed diffusive SIR epidemic model with nonlinear incidence rate and external supplies. Math. Method. Appl. Sci. 40, 27722783.CrossRefGoogle Scholar
Zhu, C., Li, W. & Yang, F. (2017) Traveling waves of a reaction-diffusion SIRQ epidemic model with relapse. J. Appl. Anal. Comput. 7, 147171.Google Scholar