We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Consider the family of automorphic L-functions associated with primitive cusp forms of level one, ordered by weight k. Assuming that k tends to infinity, we prove a new approximation formula for the cubic moment of shifted L-values over this family which relates it to the fourth moment of the Riemann zeta function. More precisely, the formula includes a conjectural main term, the fourth moment of the Riemann zeta function and error terms of size smaller than that predicted by the recipe conjectures.
We formulate a generalization of Riesz-type criteria in the setting of L-functions belonging to the Selberg class. We obtain a criterion which is sufficient for the grand Riemann hypothesis (GRH) for L-functions satisfying axioms of the Selberg class without imposing the Ramanujan hypothesis on their coefficients. We also construct a subclass of the Selberg class and prove a necessary criterion for GRH for L-functions in this subclass. Identities of Ramanujan–Hardy–Littlewood type are also established in this setting, specific cases of which yield new transformation formulas involving special values of the Meijer G-function of the type ${G^{n , 0}_{0 , n}}$.
We introduce interpolated multiple Hurwitz polylogs and interpolated multiple Hurwitz zeta values. In addition, we discuss the generating functions for the sum of the polylogs/zeta values of fixed weight, depth, and all heights. The functions are expressed in terms of generalized hypergeometric functions. Compared with the pioneering results of Ohno and Zagier on the generating function, our setup generalizes the results in three directions, namely, at general heights, with a t-interpolation, and as a Hurwitz type. As an application, by fixing the Hurwitz parameter to rational numbers, the generating functions for multiple zeta values with level are given.
We study Ohno–Zagier type relations for multiple t-values and multiple t-star values. We represent the generating function of sums of multiple t-(star) values with fixed weight, depth and height in terms of the generalised hypergeometric function
$\,_3F_2$
. As applications, we get a formula for the generating function of sums of multiple t-(star) values of maximal height and a weighted sum formula for sums of multiple t-(star) values with fixed weight and depth.
A class of exotic
$_3F_2(1)$
-series is examined by integral representations, which enables the authors to present relatively easier proofs for a few remarkable formulae. By means of the linearization method, these
$_3F_2(1)$
-series are further extended with two integer parameters. A general summation theorem is explicitly established for these extended series, and several sample summation identities are highlighted as consequences.
We prove that, for any small $\varepsilon > 0$, the number of irrationals among the following odd zeta values: $\zeta (3),\zeta (5),\zeta (7),\ldots ,\zeta (s)$ is at least $( c_0 - \varepsilon )({s^{1/2}}/{(\log s)^{1/2}})$, provided $s$ is a sufficiently large odd integer with respect to $\varepsilon$. The constant $c_0 = 1.192507\ldots$ can be expressed in closed form. Our work improves the lower bound $2^{(1-\varepsilon )({\log s}/{\log \log s})}$ of the previous work of Fischler, Sprang and Zudilin. We follow the same strategy of Fischler, Sprang and Zudilin. The main new ingredient is an asymptotically optimal design for the zeros of the auxiliary rational functions, which relates to the inverse totient problem.
We give a new hypergeometric construction of rational approximations to ζ(4), which absorbs the earlier one from 2003 based on Bailey's 9F8 hypergeometric integrals. With the novel ingredients we are able to gain better control of the arithmetic and produce a record irrationality measure for ζ(4).
For a certain class of hypergeometric functions $_{3}F_{2}$ with rational parameters, we give a sufficient condition for the special value at $1$ to be expressed in terms of logarithms of algebraic numbers. We give two proofs, both of which are algebro-geometric and related to higher regulators.
We prove the Gross–Deligne conjecture on CM periods for motives associated with ${{H}^{2}}$ of certain surfaces fibered over the projective line. Then we prove for the same motives a formula which expresses the ${{K}_{1}}$-regulators in terms of hypergeometric functions $_{3}{{F}_{2}}$, and obtain a new example of non-trivial regulators.
We establish some supercongruences for the truncated $_{2}F_{1}$ and $_{3}F_{2}$ hypergeometric series involving the $p$-adic gamma functions. Some of these results extend the four Rodriguez-Villegas supercongruences on the truncated $_{3}F_{2}$ hypergeometric series. Related supercongruences modulo $p^{3}$ are proposed as conjectures.
We express the number of points on the Dwork hypersurface $X_{\unicode[STIX]{x1D706}}^{d}:x_{1}^{d}+x_{2}^{d}+\cdots +x_{d}^{d}=d\unicode[STIX]{x1D706}x_{1}x_{2}\cdots x_{d}$ over a finite field of order $q\not \equiv 1\,(\text{mod}\,d)$ in terms of McCarthy’s $p$-adic hypergeometric function for any odd prime $d$.
We study the Mahler measures of certain families of Laurent polynomials in two and three variables. Each of the known Mahler measure formulas for these families involves $L$–values of at most one newform and/or at most one quadratic character. In this paper we show, either rigorously or numerically, that the Mahler measures of some polynomials are related to $L$–values of multiple newforms and quadratic characters simultaneously. The results suggest that the number of modular $L$–values appearing in the formulas significantly depends on the shape of the algebraic value of the parameter chosen for each polynomial. As a consequence, we also obtain new formulas relating special values of hypergeometric series evaluated at algebraic numbers to special values of $L$–functions.
The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three-term recurrence relations, satisfied by the polynomials under consideration, to identify bounds for the extreme zeros of Meixner and Kravchuk polynomials.
We study the densities of uniform random walks in the plane. A special focus is on the case of short walks with three or four steps and, less completely, those with five steps. As one of the main results, we obtain a hypergeometric representation of the density for four steps, which complements the classical elliptic representation in the case of three steps. It appears unrealistic to expect similar results for more than five steps. New results are also presented concerning the moments of uniform random walks and, in particular, their derivatives. Relations with Mahler measures are discussed.
In a recent paper, Miller derived a Kummer-type transformation for the generalised hypergeometric function $_{p}{{F}_{p}}(x)$ when pairs of parameters differ by unity, by means of a reduction formula for a certain Kampé de Fériet function. An alternative and simpler derivation of this transformation is obtained here by application of the well-known Kummer transformation for the confluent hypergeometric function corresponding to $p\,=\,1$
We consider a multi-parameter family of canonical coordinates and mirror maps originally introduced by Zudilin. This family includes many of the known one-variable mirror maps as special cases, in particular many of modular origin and the celebrated ‘quintic’ example of Candelas, de la Ossa, Green and Parkes. In a previous paper, we proved that all coefficients in the Taylor expansions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps) are integers. Here we prove that all coefficients in their Taylor expansions at 0 are positive. Furthermore, we provide several results about the behaviour of the canonical coordinates and mirror maps as complex functions. In particular, we address their analytic continuation, points of singularity, and radius of covergence. We present several very precise conjectures on the radius of covergence of the mirror maps and the sign pattern of the coefficients in their Taylor expansions at 0.
There is a commutative algebra of differential-difference operators, acting on polynomials on , associated with the reflection group B2. This paper presents an integral transform which intertwines this algebra, allowing one free parameter, with the algebra of partial derivatives. The method of proof depends on properties of a certain class of balanced terminating hypergeometric series of 4F3-type. These properties are in the form of recurrence and contiguity relations and are proved herein.
The generalized binomial function can be obtained as the solution of the equation y = 1 +zyα which satisfies y(0) = 1 where α ≠ 1 is assumed to be real and positive. The technique of Lagrange inversion can be used to express as a series which converges for |z| < α-α|a — l|α-1. We obtain a representation of the function as a contour integral and show that if α > 1 it is an analytic function in the complex z plane cut along the nonnegative real axis. For 0 < α < 1 the region of analyticity is the sector |arg(—z)| < απ. In either case defined by the series can be continued beyond the circle of convergenece of the series through a functional equation which can be derived from the integral representation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.