We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $f:X\to Y$ be a surjective projective map, and let L be a holomorphic line bundle on X equipped with a (singular) semi-positive Hermitian metric h. In this article, by studying the canonical metric on the direct image sheaf of the twisted relative canonical bundles $K_{X/Y}\otimes L\otimes \mathscr {I}(h)$, we obtain that this metric has dual Nakano semi-positivity when h is smooth and there is no deformation by f and that this metric has locally Nakano semi-positivity in the singular sense when h is singular.
We consider a holomorphic family $f:\mathscr {X} \to S$ of compact complex manifolds and a line bundle $\mathscr {L}\to \mathscr {X}$. Given that $\mathscr {L}^{-1}$ carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor $\mathscr {D}$, the direct image $f_*(K_{\mathscr {X}/S}\otimes \mathscr {D} \otimes \mathscr {L})$ carries a smooth hermitian metric. If $\mathscr {L}$ is relatively positive, we give an explicit formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle.
We prove that actions of complex reductive Lie groups on a holomorphic vector bundle over a complex compact manifold are locally extendable to its local moduli space.
We prove the existence of a smoothing for a toroidal crossing space under mild assumptions. By linking log structures with infinitesimal deformations, the result receives a very compact form for normal crossing spaces. The main approach is to study log structures that are incoherent on a subspace of codimension 2 and prove a Hodge–de Rham degeneration theorem for such log spaces that also settles a conjecture by Danilov. We show that the homotopy equivalence between Maurer–Cartan solutions and deformations combined with Batalin–Vilkovisky theory can be used to obtain smoothings. The construction of new Calabi–Yau and Fano manifolds as well as Frobenius manifold structures on moduli spaces provides potential applications.
By use of a natural map introduced recently by the first and third authors from the space of pure-type complex differential forms on a complex manifold to the corresponding one on the small differentiable deformation of this manifold, we will give a power series proof for Kodaira–Spencer’s local stability theorem of Kähler structures. We also obtain two new local stability theorems, one of balanced structures on an n-dimensional balanced manifold with the
$(n-1,n)$
th mild
$\partial \overline {\partial }$
-lemma by power series method and the other one on p-Kähler structures with the deformation invariance of
$(p,p)$
-Bott–Chern numbers.
Let X be a normal compact Kähler space with klt singularities and torsion canonical bundle. We show that X admits arbitrarily small deformations that are projective varieties if its locally trivial deformation space is smooth. We then prove that this unobstructedness assumption holds in at least three cases: if X has toroidal singularities, if X has finite quotient singularities and if the cohomology group
${\mathrm {H}^{2} \!\left ( X, {\mathscr {T}_{X}} \right )}$ vanishes.
Falbel has shown that four pairwise distinct points on the boundary of a complex hyperbolic 2-space are completely determined, up to conjugation in $\text{PU}\left( 2,\,1 \right)$, by three complex cross-ratios satisfying two real equations. We give global geometrical coordinates on the resulting variety.
We develop some cohomological tools for the study of the local geometry of moduli and parameter spaces in complex Algebraic Geometry. Notably, we develop canonical formulae for the differential operators of arbitrary order and their natural action on suitable `natural' modules (for example, functions); in particular, we obtain a formula, in terms of the moduli problem, for the Lie bracket of vector fields on a moduli space. As an application, we obtain another construction and proof of flatness for the familiar KZW or Hitchin connection on moduli spaces of curves.
We develop deformation theory for abelian invariant complex structures on a nilmanifold, and prove that in this case the invariance property is preserved by the Kuranishi process. A purely algebraic condition characterizes the deformations leading again to abelian structures, and we prove that such deformations are unobstructed. Various examples illustrate the resulting theory, and the behavior possible in three complex dimensions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.