We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give explicit presentations of the integral equivariant cohomology of the affine Grassmannians and flag varieties in type A, arising from their natural embeddings in the corresponding infinite (Sato) Grassmannian and flag variety. These presentations are compared with results obtained by Lam and Shimozono, for rational equivariant cohomology of the affine Grassmannian, and by Larson, for the integral cohomology of the moduli stack of vector bundles on .
We explain an algorithm to calculate Arthur’s weighted orbital integral in terms of the number of rational points on the fundamental domain of the associated affine Springer fiber. The strategy is to count the number of rational points of the truncated affine Springer fibers in two ways: by the Arthur–Kottwitz reduction and by the Harder–Narasimhan reduction. A comparison of results obtained from these two approaches gives recurrence relations between the number of rational points on the fundamental domains of the affine Springer fibers and Arthur’s weighted orbital integrals. As an example, we calculate Arthur’s weighted orbital integrals for the groups
${\textrm {GL}}_{2}$
and
${\textrm {GL}}_{3}$
.
We construct a complex analytic version of an equivariant cohomology theory which appeared in a paper of Rezk, and which is roughly modelled on the Borel-equivariant cohomology of the double free loop space. The construction is defined on finite, torus-equivariant CW complexes and takes values in coherent holomorphic sheaves over the moduli stack of complex elliptic curves. Our methods involve an inverse limit construction over all finite-dimensional subcomplexes of the double free loop space, following an analogous construction of Kitchloo for single free loop spaces. We show that, for any given complex elliptic curve $\mathcal {C}$, the fiber of our construction over $\mathcal {C}$ is isomorphic to Grojnowski's equivariant elliptic cohomology theory associated to $\mathcal {C}$.
We generalize Uhlenbeck’s generator theorem of ${\mathcal{L}}^{-}\operatorname{U}_{n}$ to the full rational loop group ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{C}$ and its subgroups ${\mathcal{L}}^{-}\operatorname{GL}_{n}\mathbb{R}$, ${\mathcal{L}}^{-}\operatorname{U}_{p,q}$: they are all generated by just simple projective loops. Recall that Terng–Uhlenbeck studied the dressing actions of such projective loops as generalized Bäcklund transformations for integrable systems. Our result makes a nice supplement: any rational dressing is the composition of these Bäcklund transformations. This conclusion is surprising in the sense that Lie theory suggests the indispensable role of nilpotent loops in the case of noncompact reality conditions, and nilpotent dressings appear quite complicated and mysterious. The sacrifice is to introduce some extra fake singularities. So we also propose a set of generators if fake singularities are forbidden. A very geometric and physical construction of $\operatorname{U}_{p,q}$ is obtained as a by-product, generalizing the classical construction of unitary groups.
We study basic geometric properties of Kottwitz–Viehmann varieties, which are certain generalizations of affine Springer fibers that encode orbital integrals of spherical Hecke functions. Based on the previous work of A. Bouthier and the author, we show that these varieties are equidimensional and give a precise formula for their dimension. Also we give a conjectural description of their number of irreducible components in terms of certain weight multiplicities of the Langlands dual group and we prove the conjecture in the case of unramified conjugacy class.
We prove completeness for the main examples of infinite-dimensional Lie groups and some related topological groups. Consider a sequence $G_{1}\subseteq G_{2}\subseteq \cdots \,$ of topological groups $G_{n}$ n such that $G_{n}$ is a subgroup of $G_{n+1}$ and the latter induces the given topology on $G_{n}$, for each $n\in \mathbb{N}$. Let $G$ be the direct limit of the sequence in the category of topological groups. We show that $G$ induces the given topology on each $G_{n}$ whenever $\cup _{n\in \mathbb{N}}V_{1}V_{2}\cdots V_{n}$ is an identity neighbourhood in $G$ for all identity neighbourhoods $V_{n}\subseteq G_{n}$. If, moreover, each $G_{n}$ is complete, then $G$ is complete. We also show that the weak direct product $\oplus _{j\in J}G_{j}$ is complete for each family $(G_{j})_{j\in J}$ of complete Lie groups $G_{j}$. As a consequence, every strict direct limit $G=\cup _{n\in \mathbb{N}}G_{n}$ of finite-dimensional Lie groups is complete, as well as the diffeomorphism group $\text{Diff}_{c}(M)$ of a paracompact finite-dimensional smooth manifold $M$ and the test function group $C_{c}^{k}(M,H)$, for each $k\in \mathbb{N}_{0}\cup \{\infty \}$ and complete Lie group $H$ modelled on a complete locally convex space.
This paper studies two new kinds of affine Springer fibres that are adapted to the root valuation strata of Goresky–Kottwitz–MacPherson. In addition it develops various linear versions of Katz's Hodge–Newton decomposition.
In this paper, we give a characterization of the simultaneous unitarizability of any finite set of SL(2, ℂ)-valued functions on and determine all possible ways of the unitarization. Such matrix functions can be regarded as images of the generators for the fundamental group of a surface in an -family, and the results of this paper have applications in the construction of constant mean curvature surfaces in space.
In this paper we generalise the concept of a Steinberg cross section to non-connected affine Kac–Moody groups. This Steinberg cross section is a section to the restriction of the adjoint quotient map to a given exterior connected component of the affine Kac–Moody group. (The adjoint quotient is only defined on a certain submonoid of the entire group, however, the intersection of this submonoid with each connected component is non-void.) The image of the Steinberg cross section consists of a “twisted Coxeter cell”, a transversal slice to a twisted Coxeter element. A crucial point in the proof of the main result is that the image of the cross section can be endowed with a ${{\mathbb{C}}^{*}}$-action.
Let K be a local non-archimedian field, F = K((t)) and let G be a split semi-simple group. The purpose of this paper is to study certain analogs of spherical and Iwahori Hecke algebras for representations of the group G = G(F) and its central extension Ĝ. For instance our spherical Hecke algebra corresponds to the subgroup G (A) ⊂ G(F) where A ⊂ F is the subring OK((t)) where OK ⊂ K is the ring of integers. It turns out that for generic level (cf. [4]) the spherical Hecke algebra is trivial; however, on the critical level it is quite large. On the other hand we expect that the size of the corresponding Iwahori-Hecke algebra does not depend on a choice of a level (details will be considered in another publication).
We describe new construction principles for infinite-dimensional Lie groups. In particular, given any measure space $\left( X,\,\sum ,\,\mu \right)$ and (possibly infinite-dimensional) Lie group $G$, we construct a Lie group ${{L}^{\infty }}\left( X,G \right)$, which is a Fréchet-Lie group if $G$ is so. We also show that the weak direct product
$\prod{_{i\in I}^{*}{{G}_{i}}}$ of an arbitrary family ${{\left( {{G}_{i}} \right)}_{i\in I}}$ of Lie groups can be made a Lie group, modelled on the locally convex direct sum
${{\oplus }_{i\in I}}L\left( {{G}_{i}} \right)$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.