We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\Gamma $ be a finitely generated group of matrices over $\mathbb {C}$. We construct an isometric action of $\Gamma $ on a complete $\mathrm {CAT}(0)$ space such that the restriction of this action to any subgroup of $\Gamma $ containing no nontrivial unipotent elements is well behaved. As an application, we show that if M is a graph manifold that does not admit a nonpositively curved Riemannian metric, then any finite-dimensional $\mathbb {C}$-linear representation of $\pi _1(M)$ maps a nontrivial element of $\pi _1(M)$ to a unipotent matrix. In particular, the fundamental groups of such 3-manifolds do not admit any faithful finite-dimensional unitary representations.
We construct the first examples of infinite sharply 2-transitive groups which are finitely generated. Moreover, we construct such a group that has Kazhdan property (T), is simple, has exactly four conjugacy classes and we show that this number is as small as possible.
We introduce two families of two-generator one-relator groups called primitive extension groups and show that a one-relator group is hyperbolic if its primitive extension subgroups are hyperbolic. This reduces the problem of characterizing hyperbolic one-relator groups to characterizing hyperbolic primitive extension groups. These new groups, moreover, admit explicit decompositions as graphs of free groups with adjoined roots. In order to obtain this result, we characterize $2$-free one-relator groups with exceptional intersection in terms of Christoffel words, show that hyperbolic one-relator groups have quasi-convex Magnus subgroup, and build upon the one-relator tower machinery developed in previous work of the author.
For odd n we construct a path $\rho\;:\;\thinspace \Pi_1(S) \to SL(n\mathbb{R})$ of discrete, faithful, and Zariski dense representations of a surface group such that $\rho_t(\Pi_1(S)) \subset SL(n,\mathbb{Q})$ for every $t\in \mathbb{Q}$.
In this note, we present examples of non-quasi-geodesic metric spaces which are hyperbolic (i.e., satisfying Gromov’s $4$-point condition) while the intersection of any two metric balls therein does not either ‘look like’ a ball or has uniformly bounded eccentricity. This answers an open question posed by Chatterji and Niblo.
Every countable group G can be embedded in a finitely generated group $G^*$ that is hopfian and complete, that is, $G^*$ has trivial centre and every epimorphism $G^*\to G^*$ is an inner automorphism. Every finite subgroup of $G^*$ is conjugate to a finite subgroup of G. If G has a finite presentation (respectively, a finite classifying space), then so does $G^*$. Our construction of $G^*$ relies on the existence of closed hyperbolic 3-manifolds that are asymmetric and non-Haken.
Given a group $G$ and an integer $n\geq 0$, we consider the family ${\mathcal F}_n$ of all virtually abelian subgroups of $G$ of $\textrm{rank}$ at most $n$. In this article, we prove that for each $n\ge 2$ the Bredon cohomology, with respect to the family ${\mathcal F}_n$, of a free abelian group with $\textrm{rank}$$k \gt n$ is nontrivial in dimension $k+n$; this answers a question of Corob Cook et al. (Homology Homotopy Appl. 19(2) (2017), 83–87, Question 2.7). As an application, we compute the minimal dimension of a classifying space for the family ${\mathcal F}_n$ for braid groups, right-angled Artin groups, and graphs of groups whose vertex groups are infinite finitely generated virtually abelian groups, for all $n\ge 2$. The main tools that we use are the Mayer–Vietoris sequence for Bredon cohomology, Bass–Serre theory, and the Lück–Weiermann construction.
We investigate the translation lengths of group elements that arise in random walks on the isometry groups of Gromov hyperbolic spaces. In particular, without any moment condition, we prove that non-elementary random walks exhibit at least linear growth of translation lengths. As a corollary, almost every random walk on mapping class groups eventually becomes pseudo-Anosov, and almost every random walk on $\mathrm {Out}(F_n)$ eventually becomes fully irreducible. If the underlying measure further has finite first moment, then the growth rate of translation lengths is equal to the drift, the escape rate of the random walk.
We then apply our technique to investigate the random walks induced by the action of mapping class groups on Teichmüller spaces. In particular, we prove the spectral theorem under finite first moment condition, generalizing a result of Dahmani and Horbez.
A hyperbolic group G acts by homeomorphisms on its Gromov boundary. We show that if $\partial G$ is a topological n–sphere, the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard boundary action.
We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic manifold. We show that given a Kleinian group $\Gamma <{\operatorname{\mathrm{Isom}}}^+(\mathbb H^{n+1})$, each full rank cusp corresponds to a cohomology class in $H^{n}(\Gamma , V)$, where V is either the trivial coefficient or the adjoint representation. Moreover, by computing the intertwining operator, we show that different cusps give rise to linearly independent classes.
Consider the following classes of pairs consisting of a group and a finite collection of subgroups:
•$ \mathcal{C}= \left \{ (G,\mathcal{H}) \mid \text{$\mathcal{H}$ is hyperbolically embedded in $G$} \right \}$
•$ \mathcal{D}= \left \{ (G,\mathcal{H}) \mid \text{the relative Dehn function of $(G,\mathcal{H})$ is well-defined} \right \} .$
Let $G$ be a group that splits as a finite graph of groups such that each vertex group $G_v$ is assigned a finite collection of subgroups $\mathcal{H}_v$, and each edge group $G_e$ is conjugate to a subgroup of some $H\in \mathcal{H}_v$ if $e$ is adjacent to $v$. Then there is a finite collection of subgroups $\mathcal{H}$ of $G$ such that
1. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal C$, then $(G,\mathcal{H})$ is in $\mathcal C$.
2. If each $(G_v, \mathcal{H}_v)$ is in $\mathcal D$, then $(G,\mathcal{H})$ is in $\mathcal D$.
3. For any vertex $v$ and for any $g\in G_v$, the element $g$ is conjugate to an element in some $Q\in \mathcal{H}_v$ if and only if $g$ is conjugate to an element in some $H\in \mathcal{H}$.
That edge groups are not assumed to be finitely generated and that they do not necessarily belong to a peripheral collection of subgroups of an adjacent vertex are the main differences between this work and previous results in the literature. The method of proof provides lower and upper bounds of the relative Dehn functions in terms of the relative Dehn functions of the vertex groups. These bounds generalize and improve analogous results in the literature.
We show that a group that is hyperbolic relative to strongly shortcut groups is itself strongly shortcut, thus obtaining new examples of strongly shortcut groups. The proof relies on a result of independent interest: we show that every relatively hyperbolic group acts properly and cocompactly on a graph in which the parabolic subgroups act properly and cocompactly on convex subgraphs.
This article studies the properties of word-hyperbolic semigroups and monoids, that is, those having context-free multiplication tables with respect to a regular combing, as defined by Duncan and Gilman [‘Word hyperbolic semigroups’, Math. Proc. Cambridge Philos. Soc.136(3) (2004), 513–524]. In particular, the preservation of word-hyperbolicity under taking free products is considered. Under mild conditions on the semigroups involved, satisfied, for example, by monoids or regular semigroups, we prove that the semigroup free product of two word-hyperbolic semigroups is again word-hyperbolic. Analogously, with a mild condition on the uniqueness of representation for the identity element, satisfied, for example, by groups, we prove that the monoid free product of two word-hyperbolic monoids is word-hyperbolic. The methods are language-theoretically general, and apply equally well to semigroups, monoids or groups with a $\mathbf {C}$-multiplication table, where $\mathbf {C}$ is any reversal-closed super-$\operatorname {\mathrm {AFL}}$. In particular, we deduce that the free product of two groups with $\mathbf {ET0L}$ with respect to indexed multiplication tables again has an $\mathbf {ET0L}$ with respect to an indexed multiplication table.
We present a quantitative isolation property of the lifts of properly immersed geodesic planes in the frame bundle of a geometrically finite hyperbolic $3$-manifold. Our estimates are polynomials in the tight areas and Bowen–Margulis–Sullivan densities of geodesic planes, with degree given by the modified critical exponents.
We initiate the study of outer automorphism groups of special groups $G$, in the Haglund–Wise sense. We show that $\operatorname {Out}(G)$ is infinite if and only if $G$ splits over a co-abelian subgroup of a centraliser and there exists an infinite-order ‘generalised Dehn twist’. Similarly, the coarse-median preserving subgroup $\operatorname {Out}_{\rm cmp}(G)$ is infinite if and only if $G$ splits over an actual centraliser and there exists an infinite-order coarse-median-preserving generalised Dehn twist. The proof is based on constructing and analysing non-small, stable $G$-actions on $\mathbb {R}$-trees whose arc-stabilisers are centralisers or closely related subgroups. Interestingly, tripod-stabilisers can be arbitrary centralisers, and thus are large subgroups of $G$. As a result of independent interest, we determine when generalised Dehn twists associated to splittings of $G$ preserve the coarse median structure.
We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being hyperbolically embedded. We consider applications to the quasi-isometry and commensurability invariance of acylindrical hyperbolicity of finitely generated groups.
Given a finitely generated free group $ {\mathbb {F} }$ of $\mathsf {rank}( {\mathbb {F} } )\geq 3$, we show that the mapping torus of $\phi$ is (strongly) relatively hyperbolic if $\phi$ is exponentially growing. As a corollary of our work, we give a new proof of Brinkmann's theorem which proves that the mapping torus of an atoroidal outer automorphism is hyperbolic. We also give a new proof of the Bridson–Groves theorem that the mapping torus of a free group automorphism satisfies the quadratic isoperimetric inequality. Our work also solves a problem posed by Minasyan and Osin: the mapping torus of an outer automorphism is not virtually acylindrically hyperbolic if and only if $\phi$ has finite order.
In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some basic results on meandering-hyperbolic actions and give other examples of such actions.
We prove that the hitting measure is singular with respect to the Lebesgue measure for random walks driven by finitely supported measures on cocompact, hyperelliptic Fuchsian groups. Moreover, the Hausdorff dimension of the hitting measure is strictly less than one. Equivalently, the inequality between entropy and drift is strict. A similar statement is proven for Coxeter groups.