We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Motivated by approaches to the word problem for one-relation monoids arising from work of Adian and Oganesian (1987), Guba (1997), and Ivanov, Margolis, and Meakin (2001), we study the submonoid and rational subset membership problems in one-relation monoids and in positive one-relator groups. We give the first known examples of positive one-relator groups with undecidable submonoid membership problem, and we apply this to give the first known examples of one-relation monoids with undecidable submonoid membership problem. We construct several infinite families of one-relation monoids with undecidable submonoid membership problem, including examples that are defined by relations of the form $w=1$ but which are not groups, and examples defined by relations of the form $u=v$ where both of u and v are nonempty. As a consequence, we obtain a classification of the right-angled Artin groups that can arise as subgroups of one-relation monoids. We also give examples of monoids with a single defining relation of the form $aUb = a$ and examples of the form $aUb=aVa$, with undecidable rational subset membership problem. We give a one-relator group defined by a freely reduced word of the form $uv^{-1}$ with $u, v$ positive words, in which the prefix membership problem is undecidable. Finally, we prove the existence of a special two-relator inverse monoid with undecidable word problem, and in which both the relators are positive words. As a corollary, we also find a positive two-relator group with undecidable prefix membership problem. In proving these results, we introduce new methods for proving undecidability of the rational subset membership problem in monoids and groups, including by finding suitable embeddings of certain trace monoids.
We prove that the Center Conjecture passes to the Artin groups whose defining graphs are cones, if the conjecture holds for the Artin group defined on the set of the cone points. In particular, it holds for every Artin group whose defining graph has exactly one cone point.
This paper is the first of a two part series devoted to describing relations between congruence and crystallographic braid groups. We recall and introduce some elements belonging to congruence braid groups and we establish some (iso)-morphisms between crystallographic braid groups and corresponding quotients of congruence braid groups.
The algebraic mapping torus $M_{\Phi }$ of a group $G$ with an automorphism $\Phi$ is the HNN-extension of $G$ in which conjugation by the stable letter performs $\Phi$. We classify the Dehn functions of $M_{\Phi }$ in terms of $\Phi$ for a number of right-angled Artin groups (RAAGs) $G$, including all $3$-generator RAAGs and $F_k \times F_l$ for all $k,l \geq 2$.
Graph products of cyclic groups and Coxeter groups are two families of groups that are defined by labelled graphs. The family of Dyer groups contains these both families and gives us a framework to study these groups in a unified way. This paper focuses on the spherical growth series of a Dyer group D with respect to the standard generating set. We give a recursive formula for the spherical growth series of D in terms of the spherical growth series of standard parabolic subgroups. As an application we obtain the rationality of the spherical growth series of a Dyer group. Furthermore, we show that the spherical growth series of D is closely related to the Euler characteristic of D.
We show that a certain category of bimodules over a finite-dimensional quiver algebra known as a type B zigzag algebra is a quotient category of the category of type B Soergel bimodules. This leads to an alternate proof of Rouquier’s conjecture on the faithfulness of the 2-braid groups for type B.
Several finite complex reflection groups have a braid group that is isomorphic to a torus knot group. The reflection group is obtained from the torus knot group by declaring meridians to have order k for some $k\geq 2$, and meridians are mapped to reflections. We study all possible quotients of torus knot groups obtained by requiring meridians to have finite order. Using the theory of J-groups of Achar and Aubert [‘On rank 2 complex reflection groups’, Comm. Algebra36(6) (2008), 2092–2132], we show that these groups behave like (in general, infinite) complex reflection groups of rank two. The large family of ‘toric reflection groups’ that we obtain includes, among others, all finite complex reflection groups of rank two with a single conjugacy class of reflecting hyperplanes, as well as Coxeter’s truncations of the $3$-strand braid group. We classify these toric reflection groups and explain why the corresponding torus knot group can be naturally considered as its braid group. In particular, this yields a new infinite family of reflection-like groups admitting braid groups that are Garside groups. Moreover, we show that a toric reflection group has cyclic center by showing that the quotient by the center is isomorphic to the alternating subgroup of a Coxeter group of rank three. To this end we use the fact that the center of the alternating subgroup of an irreducible, infinite Coxeter group of rank at least three is trivial. Several ingredients of the proofs are purely Coxeter-theoretic, and might be of independent interest.
A theorem of Brady and Meier states that a right-angled Artin group is a duality group if and only if the flag complex of the defining graph is Cohen–Macaulay. We use this to give an example of a RAAG with the property that its outer automorphism group is not a virtual duality group. This gives a partial answer to a question of Vogtmann. In an appendix, Brück describes how he used a computer-assisted search to find further examples.
We describe a family of compactifications of the space of Bridgeland stability conditions of a triangulated category, following earlier work by Bapat, Deopurkar and Licata. We particularly consider the case of the 2-Calabi–Yau category of the
$A_2$
quiver. The compactification is the closure of an embedding (depending on q) of the stability space into an infinite-dimensional projective space. In the
$A_2$
case, the three-strand braid group
$B_3$
acts on this closure. We describe two distinguished braid group orbits in the boundary, points of which can be identified with certain rational functions in q. Points in one of the orbits are exactly the q-deformed rational numbers recently introduced by Morier-Genoud and Ovsienko, while the other orbit gives a new q-deformation of the rational numbers. Specialising q to a positive real number, we obtain a complete description of the boundary of the compactification.
Let $G_\Gamma \curvearrowright X$ and $G_\Lambda \curvearrowright Y$ be two free measure-preserving actions of one-ended right-angled Artin groups with trivial center on standard probability spaces. Assume they are irreducible, i.e. every element from a standard generating set acts ergodically. We prove that if the two actions are stably orbit equivalent (or merely stably $W^*$-equivalent), then they are automatically conjugate through a group isomorphism between $G_\Gamma$ and $G_\Lambda$. Through work of Monod and Shalom, we derive a superrigidity statement: if the action $G_\Gamma \curvearrowright X$ is stably orbit equivalent (or merely stably $W^*$-equivalent) to a free, measure-preserving, mildly mixing action of a countable group, then the two actions are virtually conjugate. We also use the works of Popa and Ioana, Popa and Vaes to establish the $W^*$-superrigidity of Bernoulli actions of all infinite conjugacy classes groups having a finite generating set made of infinite-order elements where two consecutive elements commute, and one has a nonamenable centralizer: these include one-ended nonabelian right-angled Artin groups, but also many other Artin groups and most mapping class groups of finite-type surfaces.
Using totally symmetric sets, Chudnovsky–Kordek–Li–Partin gave a superexponential lower bound on the cardinality of non-abelian finite quotients of the braid group. In this paper, we develop new techniques using multiple totally symmetric sets to count elements in non-abelian finite quotients of the braid group. Using these techniques, we improve the lower bound found by Chudnovsky et al. We exhibit totally symmetric sets in the virtual and welded braid groups and use our new techniques to find superexponential bounds for the finite quotients of the virtual and welded braid groups.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
We show that the geometric realisation of the poset of proper parabolic subgroups of a large-type Artin group has a systolic geometry. We use this geometry to show that the set of parabolic subgroups of a large-type Artin group is stable under arbitrary intersections and forms a lattice for the inclusion. As an application, we show that parabolic subgroups of large-type Artin groups are stable under taking roots and we completely characterise the parabolic subgroups that are conjugacy stable.
We also use this geometric perspective to recover and unify results describing the normalisers of parabolic subgroups of large-type Artin groups.
This paper gives a description of the full space of Bridgeland stability conditions on the bounded derived category of a contraction algebra associated to a
$3$
-fold flop. The main result is that the stability manifold is the universal cover of a naturally associated hyperplane arrangement, which is known to be simplicial and in special cases is an ADE root system. There are four main corollaries: (1) a short proof of the faithfulness of pure braid group actions in both algebraic and geometric settings, the first that avoid normal forms; (2) a classification of tilting complexes in the derived category of a contraction algebra; (3) contractibility of the stability space associated to the flop; and (4) a new proof of the
$K(\unicode{x3c0} \,,1)$
-theorem in various finite settings, which includes ADE braid groups.
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations between the corresponding Dehn twists.
We describe all groups that can be generated by two twists along spherical sequences in an enhanced triangulated category. It will be shown that with one exception such a group is isomorphic to an abelian group generated by not more than two elements, the free group on two generators or the braid group of one of the types
$A_2$
,
$B_2$
and
$G_2$
factorised by a central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear relation between length and sphericity holds. The mentioned exception can occur when one has two spherical sequences of length 3 and sphericity 2. In this case the group generated by the corresponding two spherical twists can be isomorphic to the nontrivial central extension of the symmetric group on three elements by the infinite cyclic group. Also we will apply this result to give a presentation of the derived Picard group of selfinjective algebras of the type
$D_4$
with torsion 3 by generators and relations.
We initiate the study of C*-algebras and groupoids arising from left regular representations of Garside categories, a notion which originated from the study of Braid groups. Every higher rank graph is a Garside category in a natural way. We develop a general classification result for closed invariant subspaces of our groupoids as well as criteria for topological freeness and local contractiveness, properties which are relevant for the structure of the corresponding C*-algebras. Our results provide a conceptual explanation for previous results on gauge-invariant ideals of higher rank graph C*-algebras. As another application, we give a complete analysis of the ideal structures of C*-algebras generated by left regular representations of Artin–Tits monoids.
Generalising previous results on classical braid groups by Artin and Lin, we determine the values of m, n ∈ $\mathbb N$ for which there exists a surjection between the n- and m-string braid groups of an orientable surface without boundary. This result is essentially based on specific properties of their lower central series, and the proof is completely combinatorial. We provide similar but partial results in the case of orientable surfaces with boundary components and of non-orientable surfaces without boundary. We give also several results about the classification of different representations of surface braid groups in symmetric groups.