We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we first introduce the concept of symmetric biderivation radicals and characteristic subalgebras of Lie algebras and study their properties. Based on these results, we precisely determine biderivations of some Lie algebras including finite-dimensional simple Lie algebras over arbitrary fields of characteristic not $2$ or $3$, and the Witt algebras $\mathcal {W}^+_n$ over fields of characteristic $0$. As an application, commutative post-Lie algebra structure on the aforementioned Lie algebras is shown to be trivial.
Suppose $\mathfrak {g}=\mathfrak {g}_{\bar 0}+\mathfrak {g}_{\bar 1}$ is a finite-dimensional restricted Lie superalgebra over an algebraically closed field $\mathbf {k}$ of characteristic $p>2$. In this article, we propose a conjecture for maximal dimensions of irreducible modules over the universal enveloping algebra $U(\mathfrak {g})$ of $\mathfrak {g}$, as a super generalization of the celebrated first Kac–Weisfeiler conjecture. It is demonstrated that the conjecture holds for all basic classical Lie superalgebras and all completely solvable restricted Lie superalgebras. In this process, we investigate irreducible representations of solvable Lie superalgebras.
Let ${\mathfrak g}$ be a complex simple Lie algebra and ${\mathfrak n}$ the nilradical of a parabolic subalgebra of ${\mathfrak g}$. We consider some properties of the coadjoint representation of ${\mathfrak n}$ and related algebras of invariants. This includes (i) the problem of existence of generic stabilizers, (ii) a description of the Frobenius semiradical of ${\mathfrak n}$ and the Poisson center of the symmetric algebra , (iii) the structure of as -module, and (iv) the description of square integrable (= quasi-reductive) nilradicals. Our main technical tools are the Kostant cascade in the set of positive roots of ${\mathfrak g}$ and the notion of optimization of ${\mathfrak n}$.
In this paper, we study an analogue of the Bernstein–Gelfand–Gelfand category ${\mathcal {O}}$ for truncated current Lie algebras $\mathfrak {g}_n$ attached to a complex semisimple Lie algebra. This category admits Verma modules and simple modules, each parametrized by the dual space of the truncated currents on a choice of Cartan subalgebra in $\mathfrak {g}$. Our main result describes an inductive procedure for computing composition multiplicities of simples inside Vermas for $\mathfrak {g}_n$, in terms of similar composition multiplicities for ${\mathfrak {l}}_{n-1}$ where ${\mathfrak {l}}$ is a Levi subalgebra. As a consequence, these numbers are expressed as integral linear combinations of Kazhdan–Lusztig polynomials evaluated at 1. This generalizes recent work of the first author, where the case $n=1$ was treated.
In this paper, we give a new method to classify all simple cuspidal modules for the $\mathbb {Z}$-graded and $1/2\mathbb {Z}$-graded Ovsienko–Roger superalgebras. Using this result, we classify all simple Harish–Chandra modules over some related Lie superalgebras, including the $N=1$ BMS$_3$ superalgebra, the super $W(2,2)$, etc.
For complex simple Lie algebras of types B, C, and D, we provide new explicit formulas for the generators of the commutative subalgebra $\mathfrak z(\hat {\mathfrak g})\subset {{\mathcal {U}}}(t^{-1}\mathfrak g[t^{-1}])$ known as the Feigin–Frenkel centre. These formulas make use of the symmetrisation map as well as of some well-chosen symmetric invariants of $\mathfrak g$. There are some general results on the rôle of the symmetrisation map in the explicit description of the Feigin–Frenkel centre. Our method reduces questions about elements of $\mathfrak z(\hat {\mathfrak g})$ to questions on the structure of the symmetric invariants in a type-free way. As an illustration, we deal with type G$_2$ by hand. One of our technical tools is the map ${\sf m}\!\!: {{\mathcal {S}}}^{k}(\mathfrak g)\to \Lambda ^{2}\mathfrak g \otimes {{\mathcal {S}}}^{k-3}(\mathfrak g)$ introduced here. As the results show, a better understanding of this map will lead to a better understanding of $\mathfrak z(\hat {\mathfrak g})$.
We construct a mirabolic analogue of the geometric Satake equivalence. We also prove an equivalence that relates representations of a supergroup to the category of $\operatorname{GL}(N-1,{\mathbb {C}}[\![t]\!])$-equivariant perverse sheaves on the affine Grassmannian of $\operatorname{GL}_N$. We explain how our equivalences fit into a more general framework of conjectures due to Gaiotto and to Ben-Zvi, Sakellaridis and Venkatesh.
The first fundamental theorem of invariant theory for the orthosymplectic supergroup scheme $\text{OSp}(m|2n)$ states that there is a full functor from the Brauer category with parameter $m-2n$ to the category of tensor representations of $\text{OSp}(m|2n)$. This has recently been proved using algebraic supergeometry to relate the problem to the invariant theory of the general linear supergroup. In this work, we use the same circle of ideas to prove the second fundamental theorem for the orthosymplectic supergroup. Specifically, we give a linear description of the kernel of the surjective homomorphism from the Brauer algebra to endomorphisms of tensor space, which commute with the orthosymplectic supergroup. The main result has a clear and succinct formulation in terms of Brauer diagrams. Our proof includes, as special cases, new proofs of the corresponding second fundamental theorems for the classical orthogonal and symplectic groups, as well as their quantum analogues, which are independent of the Capelli identities. The results of this paper have led to the result that the map from the Brauer algebra ${\mathcal{B}}_{r}(m-2n)$ to endomorphisms of $V^{\otimes r}$ is an isomorphism if and only if $r<(m+1)(n+1)$.
In this note we consider parabolic subroot systems of a complex simple Lie Algebra. We describe root theoretic data of the subroot systems in terms of that of the root system and we give a selection of applications of our results to the study of generalized flag manifolds.
A classification of simple weight modules over the Schrödinger algebra is given. The Krull and the global dimensions are found for the centralizer ${{C}_{S}}(H)$ (and some of its prime factor algebras) of the Cartan element $H$ in the universal enveloping algebra $S$ of the Schrödinger (Lie) algebra. The simple ${{C}_{S}}(H)$-modules are classified. The Krull and the global dimensions are found for some (prime) factor algebras of the algebra $S$ (over the centre). It is proved that some (prime) factor algebras of $S$ and ${{C}_{S}}(H)$ are tensor homological$/$Krull minimal.
We prove that the group of automorphisms of the Lie algebra DerK(Qn) of derivations of the field of rational functions Qn = K(x1, . . ., xn) over a field of characteristic zero is canonically isomorphic to the group of automorphisms of the K-algebra Qn.
Consider a simple Lie algebra $\mathfrak{g}$ and $\overline{\mathfrak{g}}$ ⊂ $\mathfrak{g}$ a Levi subalgebra. Two irreducible $\overline{\mathfrak{g}}$-modules yield isomorphic inductions to $\mathfrak{g}$ when their highest weights coincide up to conjugation by an element of the Weyl group W of $\mathfrak{g}$ which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$. In this paper, we study the converse problem: given two irreducible $\overline{\mathfrak{g}}$-modules of highest weight μ and ν whose inductions to $\mathfrak{g}$ are isomorphic, can we conclude that μ and ν are conjugate under the action of an element of W which is also a Dynkin diagram automorphism of $\overline{\mathfrak{g}}$? We conjecture this is true in general. We prove this conjecture in type A and, for the other root systems, in various situations providing μ and ν satisfy additional hypotheses. Our result can be interpreted as an analogue for branching coefficients of the main result of Rajan [6] on tensor product multiplicities.
This paper studies the $K$-theoretic invariants of the crossed product ${{C}^{*}}$-algebras associated with an important family of homeomorphisms of the tori ${{\mathbb{T}}^{n}}$ called Furstenberg transformations. Using the Pimsner–Voiculescu theorem, we prove that given $n$, the $K$-groups of those crossed products whose corresponding $n\,\times \,n$ integer matrices are unipotent of maximal degree always have the same rank ${{a}_{n}}$. We show using the theory developed here that a claim made in the literature about the torsion subgroups of these $K$-groups is false. Using the representation theory of the simple Lie algebra $\mathfrak{s}\mathfrak{l}\left( 2,\,\mathbb{C} \right)$, we show that, remarkably, ${{a}_{n}}$ has a combinatorial significance. For example, every ${{a}_{2n+1}}$ is just the number of ways that 0 can be represented as a sum of integers between –$n$ and $n$ (with no repetitions). By adapting an argument of van Lint (in which he answered a question of Erdős), a simple explicit formula for the asymptotic behavior of the sequence $\{{{a}_{n}}\}$ is given. Finally, we describe the order structure of the ${{K}_{0}}$-groups of an important class of Furstenberg crossed products, obtaining their complete Elliott invariant using classification results of H. Lin and N. C. Phillips.
We prove that for simple complex finite dimensional Lie algebras, affine Kac–Moody Lie algebras, the Virasoro algebra, and the Heisenberg–Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro algebras and for Heisenberg algebras.
Let d be a positive integer, q=(qij)d×d be a d×d matrix, ℂq be the quantum torus algebra associated with q. We have the semidirect product Lie algebra $\mathfrak{g}$=Der(ℂq)⋉Z(ℂq), where Z(ℂq) is the centre of the rational quantum torus algebra ℂq. In this paper, we construct a class of irreducible weight $\mathfrak{g}$-modules $\mathcal{V}$α (V,W) with three parameters: a vector α∈ℂd, an irreducible $\mathfrak{gl}$d-module V and a graded-irreducible $\mathfrak{gl}$N-module W. Then, we show that an irreducible Harish Chandra (uniformaly bounded) $\mathfrak{g}$-module M is isomorphic to $\mathcal{V}$α(V,W) for suitable α, V, W, if the action of Z(ℂq) on M is associative (respectively nonzero).
In this paper we study left invariant Einstein–Randers metrics on compact Lie groups. First, we give a method to construct left invariant non-Riemannian Einstein–Randers metrics on a compact Lie group, using the Zermelo navigation data. Then we prove that this gives a complete classification of left invariant Einstein–Randers metrics on compact simple Lie groups with the underlying Riemannian metric naturally reductive. Further, we completely determine the identity component of the group of isometries for this type of metrics on simple groups. Finally, we study some geometric properties of such metrics. In particular, we give the formulae of geodesics and flag curvature of such metrics.
Let G be an arbitrary non-zero additive subgroup of the complex number field ℂ, and let Vir[G] be the corresponding generalized Virasoro algebra over ℂ. In this paper we determine all irreducible weight modules with finite-dimensional weight spaces over Vir[G]. The classification strongly depends on the index group G. If G does not have a direct summand isomorphic to ℤ (the integers), then such irreducible modules over Vir[G] are only modules of intermediate series whose weight spaces are all one dimensional. Otherwise, there is one further class of modules that are constructed by using intermediate series modules over a generalized Virasoro subalgebra Vir[G0] of Vir[G] for a direct summand G0 of G with G = G0 ⊕ ℤb, where b ∈ G \ G0. This class of irreducible weight modules do not have corresponding weight modules for the classical Virasoro algebra.
Let M be a maximal subalgebra of the Lie algebra L. A subalgebra C of L is said to be a completion for M if C is not contained in M but every proper subalgebra of C that is an ideal of L is contained in M. The set I(M) of all completions of M is called the index complex of M in L. We use this concept to investigate the influence of the maximal subalgebras on the structure of a Lie algebra, in particular, finding new characterizations of solvable and supersolvable Lie algebras.
Given a complex semisimple Lie algebra $\mathfrak{g}=\mathfrak{k}+i\mathfrak{k}$ ($\mathfrak{t}$ is a compact real form of $\mathfrak{g}$), let $\text{ }\pi \text{ }\text{:}\mathfrak{g}\to \mathfrak{h}$ be the orthogonal projection (with respect to the Killing form) onto the Cartan subalgebra $\mathfrak{h}:=\mathfrak{t}\text{+}i\mathfrak{t}$, where $\mathfrak{t}$ is a maximal abelian subalgebra of $\mathfrak{k}$. Given $x\,\in \,\mathfrak{g}$, we consider $\text{ }\!\!\pi\!\!\text{ (Ad(}K\text{)}x)$, where $K$ is the analytic subgroup $G$ corresponding to $\mathfrak{k}$, and show that it is star-shaped. The result extends a result of Tsing. We also consider the generalized numerical range $f(\text{Ad(}K\text{)}x)$, where $f$ is a linear functional on $\mathfrak{g}$. We establish the star-shapedness of $f(\text{Ad(}K\text{)}x)$ for simple Lie algebras of type $B$.