We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $Y$ be a complex Enriques surface whose universal cover $X$ is birational to a general quartic Hessian surface. Using the result on the automorphism group of $X$ due to Dolgachev and Keum, we obtain a finite presentation of the automorphism group of $Y$. The list of elliptic fibrations on $Y$ and the list of combinations of rational double points that can appear on a surface birational to $Y$ are presented. As an application, a set of generators of the automorphism group of the generic Enriques surface is calculated explicitly.
The $\text{SL}\left( 2,\mathbb{C} \right)$-representation varieties of punctured surfaces form natural families parameterized by monodromies at the punctures. In this paper, we compute the loci where these varieties are singular for the cases of one-holed and two-holed tori and the four-holed sphere. We then compute the de Rham cohomologies of these varieties of the one-holed torus and the four-holed sphere when the varieties are smooth via the Grothendieck theorem. Furthermore, we produce the explicit Gauß-Manin connection on the natural family of the smooth $\text{SL}\left( 2,\mathbb{C} \right)$-representation varieties of the one-holed torus.
Mori dream spaces form a large example class of algebraic varieties, comprising the well-known toric varieties. We provide a first software package for the explicit treatment of Mori dream spaces and demonstrate its use by presenting basic sample computations. The software package is accompanied by a Cox ring database which delivers defining data for Cox rings and Mori dream spaces in a suitable format. As an application of the package, we determine the common Cox ring for the symplectic resolutions of a certain quotient singularity investigated by Bellamy–Schedler and Donten-Bury–Wiśniewski.
A mixed quasi-étale quotient is the quotient of the product of a curve of genus at least 2 with itself by the action of a group which exchanges the two factors and acts freely outside a finite subset. A mixed quasi-étale surface is the minimal resolution of its singularities. We produce an algorithm computing all mixed quasi-étale surfaces with given geometric genus, irregularity and self-intersection of the canonical class. We prove that all irregular mixed quasi-étale surfaces of general type are minimal. As an application, we classify all irregular mixed quasi-étale surfaces of general type with genus equal to the irregularity, and all the regular ones with K2 > 0, thus constructing new examples of surfaces of general type with χ = 1. We mention the first example of a minimal surface of general type with pg = q = 1 and Albanese fibre of genus bigger than K2.
If C is a curve of genus 2 defined over a field k and J is its Jacobian, then we can associate a hypersurface K in ℙ3 to J, called the Kummer surface of J. Flynn has made this construction explicit in the case when the characteristic of k is not 2 and C is given by a simplified equation. He has also given explicit versions of several maps defined on the Kummer surface and shown how to perform arithmetic on J using these maps. In this paper we generalize these results to the case of arbitrary characteristic.
The topological classification of smooth real cubic surfaces is recalled and compared to the classification in terms of the number of real lines and of real tritangent planes, as obtained by $\text{L}$. Schläfli in 1858. Using this, explicit examples of surfaces of every possible type are given.
We construct moduli curves of polarized supersingular K3 surfaces in characteristic 2 with Artin invariant 2. As an application, we detect a ‘jump’ phenomenon in a family of automorphism groups of supersingular K3 surfaces with a constant Néron–Severi lattice.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.