Published online by Cambridge University Press: 26 August 2014
A mixed quasi-étale quotient is the quotient of the product of a curve of genus at least 2 with itself by the action of a group which exchanges the two factors and acts freely outside a finite subset. A mixed quasi-étale surface is the minimal resolution of its singularities. We produce an algorithm computing all mixed quasi-étale surfaces with given geometric genus, irregularity and self-intersection of the canonical class. We prove that all irregular mixed quasi-étale surfaces of general type are minimal. As an application, we classify all irregular mixed quasi-étale surfaces of general type with genus equal to the irregularity, and all the regular ones with K2 > 0, thus constructing new examples of surfaces of general type with χ = 1. We mention the first example of a minimal surface of general type with pg = q = 1 and Albanese fibre of genus bigger than K2.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.