Let
$\mathbf{H}$ be the Hilbert function of some set of distinct points in
${{\mathbb{P}}^{n}}$ and let
$\alpha \,=\,\alpha (\mathbf{H})$ be the least degree of a hypersurface of
${{\mathbb{P}}^{n}}$ containing these points. Write
$\alpha ={{d}_{s}}+{{d}_{s-1}}+\cdot \cdot \cdot +{{d}_{1}}$ (where
${{d}_{i}}>0$ ). We canonically decompose
$\mathbf{H}$ into
$s$ other Hilbert functions
$\text{H}\leftrightarrow \text{(}{{\text{H}'}_{s}}\text{,}...\text{,}{{\text{H}'}_{1}}\text{)}$ and show how to find sets of distinct points
${{\mathbb{Y}}_{s}},...,{{\mathbb{Y}}_{1}}$ , lying on reduced hypersurfaces of degrees
${{d}_{s}},...,{{d}_{1}}$ (respectively) such that the Hilbert function of
${{\mathbb{Y}}_{i}}$ is
${{\text{H'}}_{i}}$ and the Hilbert function of
$\mathbb{Y}=\bigcup _{i=1}^{s}\,{{\mathbb{Y}}_{i}}$ is
$\mathbf{H}$ . Some extremal properties of this canonical decomposition are also explored.