We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that the set of all $F$-pure thresholds on a fixed germ of a strongly $F$-regular pair satisfies the ascending chain condition. As a corollary, we verify the ascending chain condition for the set of all $F$-pure thresholds on smooth varieties or, more generally, on varieties with tame quotient singularities, which is an affirmative answer to a conjecture given by Blickle, Mustaţǎ and Smith.
Let $G$ be a simple algebraic group. A closed subgroup $H$ of $G$ is said to be spherical if it has a dense orbit on the flag variety $G/B$ of $G$. Reductive spherical subgroups of simple Lie groups were classified by Krämer in 1979. In 1997, Brundan showed that each example from Krämer’s list also gives rise to a spherical subgroup in the corresponding simple algebraic group in any positive characteristic. Nevertheless, up to now there has been no classification of all such instances in positive characteristic. The goal of this paper is to complete this classification. It turns out that there is only one additional instance (up to isogeny) in characteristic 2 which has no counterpart in Krämer’s classification. As one of our key tools, we prove a general deformation result for subgroup schemes that allows us to deduce the sphericality of subgroups in positive characteristic from the same property for subgroups in characteristic zero.
We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field $\mathbb{Q}$ of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type $E_{6}$. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
We give a new, geometric proof of the section conjecture for fixed points of finite group actions on projective curves of positive genus defined over the field of complex numbers, as well as its natural nilpotent analogue. As a part of our investigations we give an explicit description of the abelianised section map for groups of prime order in this setting. We also show a version of the $2$-nilpotent section conjecture.
In the present paper we introduce and study the twisted γ-filtration on K0(Gs), where Gs is a split simple linear algebraic group over a field k of characteristic prime to the order of the center of Gs. We apply this filtration to construct nontrivial torsion elements in γ-rings of twisted flag varieties.
The paper proves a result on the existence of finite flat scheme covers of Deligne–Mumford stacks. This result is used to prove that a large class of smooth Deligne–Mumford stacks with affine moduli space are quotient stacks, and in the case of quasi-projective moduli space, to reduce the question to a classical question on Brauer groups of schemes.Research of the first author supported in part by the Wolfgang Paul program of the Humboldt Foundation; research of the second author supported in part by the University of Bologna, funds for selected research topics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.