We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(A,\mathfrak{m})$ be a Cohen–Macaulay local ring, and then the notion of a $T$-split sequence was introduced in the part-1 of this paper for the $\mathfrak{m}$-adic filtration with the help of the numerical function $e^T_A$. In this article, we explore the relation between Auslander–Reiten (AR)-sequences and $T$-split sequences. For a Gorenstein ring $(A,\mathfrak{m})$, we define a Hom-finite Krull–Remak–Schmidt category $\mathcal{D}_A$ as a quotient of the stable category $\underline{\mathrm{CM}}(A)$. This category preserves isomorphism, that is, $M\cong N$ in $\mathcal{D}_A$ if and only if $M\cong N$ in $\underline{\mathrm{CM}}(A)$.This article has two objectives: first objective is to extend the notion of $T$-split sequences, and second objective is to explore the function $e^T_A$ and $T$-split sequences. When $(A,\mathfrak{m})$ is an analytically unramified Cohen–Macaulay local ring and $I$ is an $\mathfrak{m}$-primary ideal, then we extend the techniques in part-1 of this paper to the integral closure filtration with respect to $I$ and prove a version of Brauer–Thrall-II for a class of such rings.
Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions
of polynomial type and let their degrees be $t^I(N) $ and $e^I(N)$. We prove that $t^I(N) = e^I(N) = \max\{\dim N, d -1 \}$. A crucial ingredient in the proof is that $D^b(A)_f$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories.
Let $\mathfrak{p}$ be a prime ideal in a commutative noetherian ring R and denote by $k(\mathfrak{p})$ the residue field of the local ring $R_\mathfrak{p}$. We prove that if an R-module M satisfies $\operatorname{Ext}_R^{n}(k(\mathfrak{p}),M)=0$ for some $n\geqslant\dim R$, then $\operatorname{Ext}_R^i(k(\mathfrak{p}),M)=0$ holds for all $i \geqslant n$. This improves a result of Christensen, Iyengar and Marley by lowering the bound on n. We also improve existing results on Tor-rigidity. This progress is driven by the existence of minimal semi-flat-cotorsion replacements in the derived category as recently proved by Nakamura and Thompson.
In this paper, we are concerned with certain invariants of modules, called reducing invariants, which have been recently introduced and studied by Araya–Celikbas and Araya–Takahashi. We raise the question whether the residue field of each commutative Noetherian local ring has finite reducing projective dimension and obtain an affirmative answer for the question for a large class of local rings. Furthermore, we construct new examples of modules of infinite projective dimension that have finite reducing projective dimension and study several fundamental properties of reducing dimensions, especially properties under local homomorphisms of local rings.
Let $({\cal{A}},{\cal{E}})$ be an exact category. We establish basic results that allow one to identify sub(bi)functors of ${\operatorname{Ext}}_{\cal{E}}(-,-)$ using additivity of numerical functions and restriction to subcategories. We also study a small number of these new functors over commutative local rings in detail and find a range of applications from detecting regularity to understanding Ulrich modules.
Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.
We prove that each positive power of the maximal ideal of a commutative Noetherian local ring is Tor-rigid and strongly rigid. This gives new characterizations of regularity and, in particular, shows that such ideals satisfy the torsion condition of a long-standing conjecture of Huneke and Wiegand.
Let $k$ be a field and $R$ a standard graded $k$-algebra. We denote by $\operatorname{H}^{R}$ the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of $R$. We discuss the relationship between the multiplicative structure of $\operatorname{H}^{R}$ and the property that $R$ is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched Cohen–Macaulay local ring are rational, sharing a common denominator.
Given a non-negative integer n and a complete hereditary cotorsion triple , the notion of subcategories in an abelian category is introduced. It is proved that a virtually Gorenstein ring R is n-Gorenstein if and only if the subcategory of Gorenstein injective R-modules is with respect to the cotorsion triple , where stands for the subcategory of Gorenstein projectives. In the case when a subcategory of is closed under direct summands such that each object in admits a right -approximation, a Bazzoni characterization is given for to be . Finally, an Auslander–Reiten correspondence is established between the class of subcategories and that of certain subcategories of which are -coresolving covariantly finite and closed under direct summands.
Let (A, ${\mathfrak{m}$) be a Cohen–Macaulay local ring of dimension d and let I ⊆ J be two ${\mathfrak{m}$-primary ideals with I a reduction of J. For i = 0,. . .,d, let eiJ(A) (eiI(A)) be the ith Hilbert coefficient of J (I), respectively. We call the number ci(I, J) = eiJ(A) − eiI(A) the ith relative Hilbert coefficient of J with respect to I. If GI(A) is Cohen–Macaulay, then ci(I, J) satisfy various constraints. We also show that vanishing of some ci(I, J) has strong implications on depth GJn(A) for n ≫ 0.
Over a Cohen–Macaulay (CM) local ring, we characterize those modules that can be obtained as a direct limit of finitely generated maximal CM modules. We point out two consequences of this characterization: (1) Every balanced big CM module, in the sense of Hochster, can be written as a direct limit of small CM modules. In analogy with Govorov and Lazard's characterization of flat modules as direct limits of finitely generated free modules, one can view this as a “structure theorem” for balanced big CM modules. (2) Every finitely generated module has a pre-envelope with respect to the class of finitely generated maximal CM modules. This result is, in some sense, dual to the existence of maximal CM approximations, which has been proved by Auslander and Buchweitz.
Let $R$ be a commutative Gorenstein ring. A result of Araya reduces the Auslander–Reiten conjecture on the vanishing of self-extensions to the case where $R$ has Krull dimension at most one. In this paper we extend Araya’s result to certain $R$-algebras. As a consequence of our argument, we obtain examples of bound quiver algebras that satisfy the Auslander–Reiten conjecture.
We show that under some conditions a Gorenstein ring $R$ satisfies the Generalized Auslander–Reiten conjecture if and only if $R\left[ x \right]$ does. When $R$ is a local ring we prove the same result for some localizations of $R\left[ x \right]$.
Given a finitely generated module over a commutative noetherian ring that satisfies certain reflexivity conditions, we show how failure of the semidualizing property for the module manifests in a disconnection of the prime spectrum of the ring.
Let R be a complete intersection ring, and let M and N be R-modules. It is shown that the vanishing of ExtiR(M, N) for a certain number of consecutive values of i starting at n forces the complete intersection dimension of M to be at most n–1. We also estimate the complete intersection dimension of M*, the dual of M, in terms of vanishing of cohomology modules, ExtiR(M,N).
Let (A, ) be a local hypersurface with an isolated singularity. We show that Hochster's theta pairing θA vanishes on elements that are numerically equivalent to zero in the Grothendieck group of A under the mild assumption that Spec A admits a resolution of singularities. This extends a result by Celikbas-Walker. We also prove that when dimA = 3, Hochster's theta pairing is positive semi-definite. These results combine to show that the counter-example of Dutta-Hochster-McLaughlin to the general vanishing of Serre's intersection multiplicity exists for any three dimensional isolated hypersurface singularity that is not a UFD and has a desingularization. We also show that, if A is three dimensional isolated hypersurface singularity that has a desingularization, the divisor class group is finitely generated torsion-free. Our method involves showing that θA gives a bivariant class for the morphism Spec (A/) → Spec A.
Let R be a commutative Noetherian ring, is an ideal of R and M is an R-module. We intend to establish the dual of Grothendieck's Vanishing Theorem for local homology modules. We conjecture that =0 for all i>magRM. We prove this in several cases.
This paper builds on work of Hochster and Yao that provides nice embeddings for finitely generated modules of finite G-dimension, finite projective dimension or locally finite injective dimension. We extend these results by providing similar embeddings in the relative setting, that is, for certain modules of finite GC-dimension, finite C-projective dimension, locally finite C-injective dimension or locally finite C-injective dimension where C is a semidualizing module. Along the way, we extend some results for modules of finite homological dimension to modules of locally finite homological dimension in the relative setting.
Sather-Wagstaff et al. proved in [8] (S. Sather-Wagsta, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc.(2), 77(2) (2008), 481–502) that iterating the process used to define Gorenstein projective modules exactly leads to the Gorenstein projective modules. Also, they established in [9] (S. Sather-Wagsta, T. Sharif and D. White, AB-contexts and stability for Goren-stein at modules with respect to semi-dualizing modules, Algebra Represent. Theory14(3) (2011), 403–428) a stability of the subcategory of Gorenstein flat modules under a procedure to build R-modules from complete resolutions. In this paper we are concerned with another kind of stability of the class of Gorenstein flat modules via-à-vis the very Gorenstein process used to define Gorenstein flat modules. We settle in affirmative the following natural question in the setting of a left GF-closed ring R: Given an exact sequence of Gorenstein flat R-modules G = ⋅⋅⋅ G2G1G0G−1G−2 ⋅⋅⋅ such that the complex H ⊗RG is exact for each Gorenstein injective right R-module H, is the module M:= Im(G0 → G−1) a Gorenstein flat module?
We show that if the given cotorsion pair in the category of modules is complete and hereditary, then both of the induced cotorsion pairs in the category of complexes are complete. We also give a cofibrantly generated model structure that can be regarded as a generalization of the projective model structure.