Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T21:51:48.934Z Has data issue: false hasContentIssue false

ANNIHILATORS AND DIMENSIONS OF THE SINGULARITY CATEGORY

Published online by Cambridge University Press:  06 January 2023

JIAN LIU*
Affiliation:
School of Mathematics and Statistics Central China Normal University Wuhan 430079 China

Abstract

Let R be a commutative Noetherian ring. We prove that if R is either an equidimensional finitely generated algebra over a perfect field, or an equidimensional equicharacteristic complete local ring with a perfect residue field, then the annihilator of the singularity category of R coincides with the Jacobian ideal of R up to radical. We establish a relationship between the annihilator of the singularity category of R and the cohomological annihilator of R under some mild assumptions. Finally, we give an upper bound for the dimension of the singularity category of an equicharacteristic excellent local ring with isolated singularity. This extends a result of Dao and Takahashi to non-Cohen–Macaulay rings.

Type
Article
Copyright
The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bahlekeh, A., Hakimian, E., Salarian, S., and Takahashi, R., Annihilation of cohomology, generation of modules and finiteness of derived dimension , Q. J. Math. 67 (2016), 387404.CrossRefGoogle Scholar
Bass, H. and Murthy, M. P., Grothendieck groups and Picard groups of abelian group rings , Ann. of Math. (2) 86 (1967), 1673.CrossRefGoogle Scholar
Benson, D., Iyengar, S. B., and Krause, H., A local-global principle for small triangulated categories , Math. Proc. Cambridge Philos. Soc. 158 (2015), 451476.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1998.CrossRefGoogle Scholar
Buchweitz, R.-O., Maximal Cohen–Macaulay Modules and Tate Cohomology, Math. Surveys Monogr. 262, Amer. Math. Soc, Providence, RI, 2021, with Appendices by Luchezar L. Avramov, Benjamin Briggs, Srikanth B. Iyengar, and Janina C. Letz.CrossRefGoogle Scholar
Dao, H. and Takahashi, R., Upper bounds for dimensions of singularity categories , C. R. Math. Acad. Sci. Paris 353 (2015), 297301.CrossRefGoogle Scholar
Dieterich, E., Reduction of isolated singularities , Comment. Math. Helv. 62 (1987), 654676.CrossRefGoogle Scholar
Eisenbud, D., Commutative Algebra: With a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995.CrossRefGoogle Scholar
Esentepe, Ö., The cohomology annihilator of a curve singularity , J. Algebra 541 (2020), 359379.CrossRefGoogle Scholar
Hartshorne, R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1983.Google Scholar
Herzog, J. and Popescu, D., Thom–Sebastiani problems for maximal Cohen–Macaulay modules , Math. Ann. 309 (1997), 677700.CrossRefGoogle Scholar
Iyengar, S. B., Letz, J. C., Liu, J., and Pollitz, J., Exceptional complete intersection maps of local rings , Pacific J. Math. 318 (2022), 275293.CrossRefGoogle Scholar
Iyengar, S. B. and Takahashi, R., Annihilation of cohomology and strong generation of module categories , Int. Math. Res. Not. IMRN 2016, 499535.Google Scholar
Iyengar, S. B. and Takahashi, R., The Jacobian ideal of a commutative ring and annihilators of cohomology , J. Algebra 571 (2021), 280296.CrossRefGoogle Scholar
Keller, B., Murfet, D., and Van den Bergh, M., On two examples by Iyama and Yoshino , Compos. Math. 147 (2011), 591612.CrossRefGoogle Scholar
Letz, J. C., Local to global principles for generation time over commutative Noetherian rings , Homology Homotopy Appl. 23 (2021), 165182.CrossRefGoogle Scholar
Matsui, H., Prime thick subcategories and spectra of derived and singularity categories of Noetherian schemes , Pacific J. Math. 313 (2021), 433457.CrossRefGoogle Scholar
Orlov, D., Triangulated categories of singularities and D-branes in Landau–Ginzburg models , Proc. Steklov Inst. Math. 246 (2004), 227248.Google Scholar
Orlov, D., “Derived categories of coherent sheaves and triangulated categories of singularities” in Algebra, Arithmetic, and Geometry. Volume II: In Honor of Yu. I. Manin, Birkhäuser, Boston, 2009, 503531.CrossRefGoogle Scholar
Rouquier, R., Representation dimension of exterior algebras , Invent. Math. 165 (2006), 357367.CrossRefGoogle Scholar
Rouquier, R., Dimensions of triangulated categories , J. K-Theory 1 (2008), 193256.CrossRefGoogle Scholar
Verdier, J.-L., “Categories dérivées” in SGA 4 1/2, Lecture Notes in Math. 569, Springer, Berlin, Heidelberg, 1977, 262311.CrossRefGoogle Scholar
Wang, H.-J., On the fitting ideals in free resolutions , Michigan Math. J. 41 (1994), 587608.CrossRefGoogle Scholar
Wang, H.-J., On the Jacobian ideals of affine algebras , Comm. Algebra 26 (1998), 15771580.CrossRefGoogle Scholar
Yoshino, Y., Brauer–Thrall type theorem for maximal Cohen–Macaulay modules , J. Math. Soc. Japan 39 (1987), 719739.CrossRefGoogle Scholar
Yoshino, Y., Cohen–Macaulay Modules over Cohen–Macaulay Rings, Lond. Math. Soc. Lecture Note Ser 146, Cambridge University Press, Cambridge, 1990.CrossRefGoogle Scholar