We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Generalizing a result of Wulf-Dieter Geyer in his thesis, we prove that if $K$ is a finitely generated extension of transcendence degree $r$ of a global field and $A$ is a closed abelian subgroup of $\textrm{Gal}(K)$, then ${\mathrm{rank}}(A)\le r+1$. Moreover, if $\mathrm{char}(K)=0$, then ${\hat{\mathbb{Z}}}^{r+1}$ is isomorphic to a closed subgroup of $\textrm{Gal}(K)$.
We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
For a prime number p and a free profinite group S on the basis X, let
$S_{\left (n,p\right )}$
,
$n=1,2,\dotsc ,$
be the p-Zassenhaus filtration of S. For
$p>n$
, we give a word-combinatorial description of the cohomology group
$H^2\left (S/S_{\left (n,p\right )},\mathbb {Z}/p\right )$
in terms of the shuffle algebra on X. We give a natural linear basis for this cohomology group, which is constructed by means of unitriangular representations arising from Lyndon words.
Let ℚsymm be the compositum of all symmetric extensions of ℚ, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let ℤsymm be the ring of integers inside ℚsymm. Then, TH(ℤsymm) is primitive recursively decidable.
We solve the inverse differential Galois problem over differential fields with a large field of constants of infinite transcendence degree over $\mathbb{Q}$. More generally, we show that over such a field, every split differential embedding problem can be solved. In particular, we solve the inverse differential Galois problem and all split differential embedding problems over $\mathbb{Q}_{p}(x)$.
We generalize known results about Hilbertian fields to Hilbertian rings. For example, let R be a Hilbertian ring (e.g. R is the ring of integers of a number field) with quotient field K and let A be an abelian variety over K. Then, for every extension M of K in K(Ator(Ksep)), the integral closure RM of R in M is Hilbertian.
Let K be a global field, $\mathcal{V}$ a proper subset of the set of all primes of K, $\mathcal{S}$ a finite subset of $\mathcal{V}$, and ${\tilde K}$ (resp. Ksep) a fixed algebraic (resp. separable algebraic) closure of K with $K_\mathrm{sep}\{\subseteq}{\tilde K}$. Let Gal(K) = Gal(Ksep/K) be the absolute Galois group of K. For each $\mathfrak{p}\in\mathcal{V}$, we choose a Henselian (respectively, a real or algebraic) closure $K_\mathfrak{p}$ of K at $\mathfrak{p}$ in ${\tilde K}$ if $\mathfrak{p}$ is non-archimedean (respectively, archimedean). Then, $K_{\mathrm{tot},\mathcal{S}}=\bigcap_{\mathfrak{p}\in\mathcal{S}}\bigcap_{\tau\in{\rm Gal}(K)}K_\mathfrak{p}^\tau$ is the maximal Galois extension of K in Ksep in which each $\mathfrak{p}\in\mathcal{S}$ totally splits. For each $\mathfrak{p}\in\mathcal{V}$, we choose a $\mathfrak{p}$-adic absolute value $|~|_\mathfrak{p}$ of $K_\mathfrak{p}$ and extend it in the unique possible way to ${\tilde K}$. Finally, we denote the compositum of all symmetric extensions of K by Ksymm. We consider an affine absolutely integral variety V in $\mathbb{A}_K^n$. Suppose that for each $\mathfrak{p}\in\mathcal{S}$ there exists a simple $K_\mathfrak{p}$-rational point $\mathbf{z}_\mathfrak{p}$ of V and for each $\mathfrak{p}\in\mathcal{V}\smallsetminus\mathcal{S}$ there exists $\mathbf{z}_\mathfrak{p}\in V({\tilde K})$ such that in both cases $|\mathbf{z}_\mathfrak{p}|_\mathfrak{p}\le1$ if $\mathfrak{p}$ is non-archimedean and $|\mathbf{z}_\mathfrak{p}|_\mathfrak{p}<1$ if $\mathfrak{p}$ is archimedean. Then, there exists $\mathbf{z}\in V(K_{\mathrm{tot},\mathcal{S}}\cap K_\mathrm{symm})$ such that for all $\mathfrak{p}\in\mathcal{V}$ and for all τ ∈ Gal(K), we have $|\mathbf{z}^\tau|_\mathfrak{p}\le1$ if $\mathfrak{p}$ is archimedean and $|\mathbf{z}^\tau|_\mathfrak{p}<1$ if $\mathfrak{p}$ is non-archimedean. For $\mathcal{S}=\emptyset$, we get as a corollary that the ring of integers of Ksymm is Hilbertian and Bezout.
Let $K$ be a finitely generated extension of $\mathbb{Q}$, and let $A$ be a nonzero abelian variety over $K$. Let $\tilde{K}$ be the algebraic closure of $K$, and let $\text{Gal}(K)=\text{Gal}(\tilde{K}/K)$ be the absolute Galois group of $K$ equipped with its Haar measure. For each $\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, let $\tilde{K}(\unicode[STIX]{x1D70E})$ be the fixed field of $\unicode[STIX]{x1D70E}$ in $\tilde{K}$. We prove that for almost all $\unicode[STIX]{x1D70E}\in \text{Gal}(K)$, there exist infinitely many prime numbers $l$ such that $A$ has a nonzero $\tilde{K}(\unicode[STIX]{x1D70E})$-rational point of order $l$. This completes the proof of a conjecture of Geyer–Jarden from 1978 in characteristic 0.
We discuss the connection between decidability of a theory of a large algebraic extensions of ${\Bbb Q}$ and the recursiveness of the field as a subset of a fixed algebraic closure. In particular, we prove that if an algebraic extension K of ${\Bbb Q}$ has a decidable existential theory, then within any fixed algebraic closure $\widetilde{\Bbb Q}$ of ${\Bbb Q}$, the field K must be conjugate over ${\Bbb Q}$ to a field which is recursive as a subset of the algebraic closure. We also show that for each positive integer e there are infinitely many e-tuples $\sigma \in {\text{Gal}}\left( {\Bbb Q} \right)^e $ such that the field $\widetilde{\Bbb Q}\left( \sigma \right)$ is primitive recursive in $\widetilde{\Bbb Q}$ and its elementary theory is primitive recursively decidable. Moreover, $\widetilde{\Bbb Q}\left( \sigma \right)$ is PAC and ${\text{Gal}}\left( {\widetilde{\Bbb Q}\left( \sigma \right)} \right)$ is isomorphic to the free profinite group on e generators.
We study the question of which Henselian fields admit definable Henselian valuations (with or without parameters). We show that every field that admits a Henselian valuation with non-divisible value group admits a parameter-definable (non-trivial) Henselian valuation. In equicharacteristic 0, we give a complete characterization of Henselian fields admitting a parameter-definable (non-trivial) Henselian valuation. We also obtain partial characterization results of fields admitting -definable (non-trivial) Henselian valuations. We then draw some Galois-theoretic conclusions from our results.
Let $p$ be a prime number and $F$ a field containing a root of unity of order $p$. We relate recent results on vanishing of triple Massey products in the $\bmod-p $ Galois cohomology of $F$, due to Hopkins, Wickelgren, Mináč, and Tân, to classical results in the theory of central simple algebras. We prove a stronger form of the vanishing property for global fields.
In this note we investigate the question when a henselian valued field carries a nontrivial ∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.
We study the asymptotical behaviour of the moduli space of morphisms of given anticanonical degree from a rational curve to a split toric variety, when the degree goes to infinity. We obtain in this case a geometric analogue of Manin’s conjecture about rational points of bounded height on varieties defined over a global field. The study is led through a generating series whose coefficients lie in a Grothendieck ring of motives, the motivic height zeta function. In order to establish convergence properties of this function, we use a notion of motivic Euler product. It relies on a construction of Denef and Loeser which associates a virtual motive to a first order logic ring formula.
For a finite set S of primes of a number field K and for σ1,…, σe ∈ Gal(K) we denote the field of totally S-adic numbers by Ktot,S and the fixed field of σ1,…,σe in Ktot,S by Ktot,S(σ). We prove that foralmost all σ ∈ Gal(K)e the absolute Galois group of Ktot,S(σ) is the free product of and a free product of local factors over S.
Every field $K$ admits proper projective extensions, that is, Galois extensions where the Galois group is a non-trivial projective group, unless $K$ is separably closed or $K$ is a pythagorean formally real field without cyclic extensions of odd degree. As a consequence, it turns out that almost all absolute Galois groups decompose as proper semidirect products.
We show that each local field has a unique maximal projective extension, and that the same holds for each global field of positive characteristic. In characteristic 0, we prove that Leopoldt's conjecture for all totally real number fields is equivalent to the statement that, for all totally real number fields, all projective extensions are cyclotomic. So the realizability of any non-procyclic projective group as Galois group over ${\mathbb Q}$ produces counterexamples to the Leopoldt conjecture.
It is proved that if $F$ is an infinite field with characteristic different from $2$, whose theory is supersimple, and $C$ is an elliptic or hyperelliptic curve over $F$ with generic ‘modulus’, then $C$ has a generic $F$-rational point. The notion of generity here is in the sense of the supersimple field $F$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.