Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:46:12.620Z Has data issue: false hasContentIssue false

The Absolute Galois Group of the Field of Totally S-Adic Numbers

Published online by Cambridge University Press:  11 January 2016

Dan Haran
Affiliation:
School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, haran@post.tau.ac.il
Moshe Jarden
Affiliation:
School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel, jarden@post.tau.ac.il
Florian Pop
Affiliation:
Department of Mathematics, University of Pennsylvania, Philadelphia, PA 19104-6395, USA, pop@math.upenn.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For a finite set S of primes of a number field K and for σ1,…, σe ∈ Gal(K) we denote the field of totally S-adic numbers by Ktot,S and the fixed field of σ1,…,σe in Ktot,S by Ktot,S(σ). We prove that foralmost all σGal(K)e the absolute Galois group of Ktot,S(σ) is the free product of and a free product of local factors over S.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2009

References

[BSJ] Bary-Soroker, L. and Jarden, M., PAC fields over finitely generated fields, Mathematische Zeitschrift, 260 (2008), 329334.CrossRefGoogle Scholar
[Efr] Efrat, I., Lifting of Generating Subgroups, Proceedings of the American Mathematical Society, 125 (1997), 22172219.Google Scholar
[FHV] Fried, M., Haran, D., and Völklein, H., Absolute Galois group of the totally real numbers, C. R. Acad. Sci. Paris, 317 (1993), 995999.Google Scholar
[FrJ] Fried, M. D. and Jarden, M., Field Arithmetic, Third Edition, revised by Moshe Jarden, Ergebnisse der Mathematik (3) 11, Springer, Heidelberg, 2008.Google Scholar
[Gey] Geyer, W.-D., Galois groups of intersections of local fields, Israel Journal of Mathematics, 30 (1978), 382396.CrossRefGoogle Scholar
[GeJ] Geyer, W.-D. and Jarden, M., PSC Galois extensions of Hilbertian fields, Mathe-matische Nachrichten, 236 (2002), 119160.Google Scholar
[GPR] Green, B., Pop, F., and Roquette, P., On Rumely’s local-global principle, Jahres-bericht der Deutschen Mathematiker-Vereinigung, 97 (1995), 4374.Google Scholar
[Har] Haran, D., On closed subgroups of free products of profinite groups, Proceedings of the London Mathematical Society, 55 (1987), 266289.CrossRefGoogle Scholar
[HaJ1] Haran, D. and Jarden, M., The absolute Galois group of a pseudo real closed algebraic field, Pacific Journal of Mathematics, 123 (1986), 5569.Google Scholar
[HaJ2] Haran, D. and Jarden, M., The absolute Galois group of a pseudo p-adically closed field, Journal für die reine und angewandte Mathematik, 383 (1988), 147206.Google Scholar
[HaJ3] Haran, D. and Jarden, M., Regular split embedding problems over complete valued fields, Forum Mathematicum, 10 (1998), 329351.Google Scholar
[HJPa] Haran, D., Jarden, M., and Pop, F., Projective group structures as absolute Galois structures with block approximation, Memoirs of AMS, 189 (2007), 156.Google Scholar
[HJPb] Haran, D., Jarden, M., and Pop, F., P-adically projective groups as absolute Galois groups, International Mathematics Research Notices, 32 (2005), 19571995.Google Scholar
[Jar1] Jarden, M., Algebraic realization of p-adically projective groups, Compositio Mathematica, 79 (1991), 2162.Google Scholar
[Jar2] Jarden, M., Intersection of local algebraic extensions of a Hilbertian field (A. Barlotti et al., eds.), NATO ASI Series C, 333, Kluwer, Dordrecht, 1991, pp. 343405.Google Scholar
[Jar3] Jarden, M., Large normal extensions of Hilbertian fields, Mathematische Zeitschrift, 224 (1997), 555565.Google Scholar
[Jar4] Jarden, M., PAC fields over number fields, Journal de Théorie des Nombres de Bordeaux, 18 (2006), 371377.Google Scholar
[JaR1] Jarden, M. and Razon, A., Pseudo algebraically closed fields over rings, Israel Journal of Mathematics, 86 (1994), 2559.Google Scholar
[JaR2] Jarden, M. and Razon, A., Rumely’s local global principle for algebraic PSC fields over rings, Transactions of AMS, 350 (1998), 5585.Google Scholar
[Lan] Lang, S., Algebra, Third Edition, Eddison-Wesley, Reading, 1993.Google Scholar
[Mel] Melnikov, O. V., Subgroups and homology of free products of profinite groups, Math. USSR Izvestiya, 34 (1990), 97119.CrossRefGoogle Scholar
[Pop1] Pop, F., Galoissche Kennzeichnung p-adisch abgeschlossener Körper, Journal für die reine und angewandte Mathematik, 392 (1988), 145175.Google Scholar
[Pop2] Pop, F., Fields of totally Σ-adic numbers, manuscript, Heidelberg, 1992 Google Scholar
[Pop3] Pop, F., On prosolvable subgroups of profinite free products and some applications, manuscripta mathematica, 86 (1995), 125135.CrossRefGoogle Scholar
[Pop4] Pop, F., Embedding problems over large fields, Annals of Mathematics, 144 (1996), 134.Google Scholar
[Pre] Prestel, A., Lectures on Formally Real Fields, Lecture Notes in Mathematics 1093, Springer, Berlin, 1984.Google Scholar
[PrR] Prestel, A. and Roquette, P., Formally p-adic Fields, Lecture Notes in Mathematics 1050, Springer, Berlin, 1984.Google Scholar