We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For an optimal modular parametrization $J_{0}(n){\twoheadrightarrow}E$ of an elliptic curve $E$ over $\mathbb{Q}$ of conductor $n$, Manin conjectured the agreement of two natural $\mathbb{Z}$-lattices in the $\mathbb{Q}$-vector space $H^{0}(E,\unicode[STIX]{x1D6FA}^{1})$. Multiple authors generalized his conjecture to higher-dimensional newform quotients. We prove the Manin conjecture for semistable $E$, give counterexamples to all the proposed generalizations, and prove several semistable special cases of these generalizations. The proofs establish general relations between the integral $p$-adic étale and de Rham cohomologies of abelian varieties over $p$-adic fields and exhibit a new exactness result for Néron models.
Let $A$ be an abelian variety over a global field $K$ of characteristic $p\geqslant 0$. If $A$ has nontrivial (respectively full) $K$-rational $l$-torsion for a prime $l\neq p$, we exploit the fppf cohomological interpretation of the $l$-Selmer group $\text{Sel}_{l}\,A$ to bound $\#\text{Sel}_{l}\,A$ from below (respectively above) in terms of the cardinality of the $l$-torsion subgroup of the ideal class group of $K$. Applied over families of finite extensions of $K$, the bounds relate the growth of Selmer groups and class groups. For function fields, this technique proves the unboundedness of $l$-ranks of class groups of quadratic extensions of every $K$ containing a fixed finite field $\mathbb{F}_{p^{n}}$ (depending on $l$). For number fields, it suggests a new approach to the Iwasawa ${\it\mu}=0$ conjecture through inequalities, valid when $A(K)[l]\neq 0$, between Iwasawa invariants governing the growth of Selmer groups and class groups in a $\mathbb{Z}_{l}$-extension.
For an abelian variety $A$ over a number field $k$ we discuss the maximal divisible subgroup of ${\mathrm{H} }^{1} (k, A)$ and its intersection with the subgroup Ш$(A/ k)$. The results are most complete for elliptic curves over $ \mathbb{Q} $.
Let $C$ be an elliptic curve defined over $\mathbb{Q}$. We can associate two formal groups with $C$: the formal group $\^{C}(X,Y)$ determined by the formal completion of the Néron model of $C$ over $\mathbb{Z}$ along the zero section, and the formal group $F_L(X,Y)$ of the L-series attached to $l$-adic representations on $C$ of the absolute Galois group of $\mathbb{Q}$. Honda shows that $F_L(X, Y)$ is defined over $\mathbb{Z}$, and it is strongly isomorphic over $\mathbb{Z}$ to $\^{C}(X,Y)$. In this paper we give a generalization of the result of Honda to building blocks over finite abelian extensions of $\mathbb{Q}$. The difficulty is to define new matrix L-series of building blocks. Our generalization contains the generalization of Deninger and Nart to abelian varieties of $\rm{GL}_2$-type. It also contains the generalization of our previous paper to $\mathbb{Q}$-curves over quadratic fields.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.