$GL_N(\mathbb{Z} )$ FOR
$N\geqslant 8$ AND THE TRIVIALITY OF
$K_8(\mathbb{Z} )$
$\mathrm {GL}_1 \times \mathrm {O}(2n)$
$\mathrm {GL}_N$ and the special values of Rankin–Selberg L-functions over a totally imaginary number field
${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$
$1$, QUATERNIONIC AUTOMORPHIC REPRESENTATIONS ON
$G_2$
$(p,p,\text{3})$ over number fields
$p$-adic families and
$\mathcal {L}$-invariants
$\unicode[STIX]{x1D6E4}_{1}(p^{\infty })$ and Galois representations