To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 is an introduction to the importance and role of time in soil biogeochemistry. Time is one of the five major factors of soil formation, but many students are unfamiliar with the concept and terms of geological time, and with the concept and understanding of soil age. New developments in geomorphology and geochemistry in the last two decades have further added important insights into the concept and determination of age on hillslopes, which is also introduced here.
Chapter 10 focuses on what might be the most important reason for studying soil biogeochemistry: its importance for and interactions with us. First, the sheer magnitude of human disturbance of the soil mantle on Earth is introduced, especially the effect of farming. The impact of farming on soil C is examined in detail, and the effects of irrigated agriculture on soil geochemistry are used as an example of further comparisons that can be made by the reader. The uncertain and potential impact of our warming climate system on soil C, and potential feedbacks that might be ensuing, are considered. The recently renewed interest in accelerated soil erosion on managed landscapes is examined in light of new methods to measure the rates of erosion and also our emerging concepts and data on the true rate of soil production and regeneration.
Under certain conditions, a finite element may lose its ability to deform and become excessively stiff. This phenomenon is called "element locking." In this chapter we will consider three forms of locking, including transverse shear locking, membrane locking, and incompressibility locking. Approaches for alleviating or avoiding locking will also be described.
Truss structures are built up from individual slender-body members connected at common joints. The members are connected through hinge joints which are free to rotate and thus cannot transmit moment. Individual members carry only axial tensile or compressive force. In this chapter, the truss is comprised of uniaxial elements introduced in the previous chapter. However, in order to construct the global stiffness matrix of a truss structure in 3D space, it is necessary to construct the element stiffness matrices with 3 DOF at each node, corresponding to three displacement components in the Cartesian coordinate system. After developing the finite element formulation for 3D truss structures, the effects of thermal expansion and uniaxial members subject to torsional deformation are treated.
In this chapter, we consider time-dependent problems of discrete systems with N DOF. We will show how the finite element formulation is used to construct the element mass matrices, which are assembled into the global mass matrix. We will consider free vibration, to determine natural frequencies and natural modes of a finite element model through eigenvalue analysis, and numerical methods for integrating the equation of motion in time which can be used to determine dynamic response under applied loads and given initial conditions. The Lagrange equation will be shown to demonstrate how it can be applied to construct equations of motion. Once again we will consider slender bodies undergoing uniaxial vibration, torsional vibration, and bending vibration. A formal derivation of the Lagrange equation will be considered in a later chapter.
Based on the author's forty years of teaching experience, this unique textbook covers both basic and advanced concepts of optimization theory and methods for process systems engineers. Topics covered include continuous, discrete and logic optimization (linear, nonlinear, mixed-integer and generalized disjunctive programming), optimization under uncertainty (stochastic programming and flexibility analysis), and decomposition techniques (Lagrangean and Benders decomposition). Assuming only a basic background in calculus and linear algebra, it enables easy understanding of mathematical reasoning, and numerous examples throughout illustrate key concepts and algorithms. End-of-chapter exercises involving theoretical derivations and small numerical problems, as well as in modeling systems like GAMS, enhance understanding and help put knowledge into practice. Accompanied by two appendices containing web links to modeling systems and models related to applications in PSE, this is an essential text for single-semester, graduate courses in process systems engineering in departments of chemical engineering.