To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this chapter, we consider time-dependent problems of discrete systems with N DOF. We will show how the finite element formulation is used to construct the element mass matrices, which are assembled into the global mass matrix. We will consider free vibration, to determine natural frequencies and natural modes of a finite element model through eigenvalue analysis, and numerical methods for integrating the equation of motion in time which can be used to determine dynamic response under applied loads and given initial conditions. The Lagrange equation will be shown to demonstrate how it can be applied to construct equations of motion. Once again we will consider slender bodies undergoing uniaxial vibration, torsional vibration, and bending vibration. A formal derivation of the Lagrange equation will be considered in a later chapter.
Based on the author's forty years of teaching experience, this unique textbook covers both basic and advanced concepts of optimization theory and methods for process systems engineers. Topics covered include continuous, discrete and logic optimization (linear, nonlinear, mixed-integer and generalized disjunctive programming), optimization under uncertainty (stochastic programming and flexibility analysis), and decomposition techniques (Lagrangean and Benders decomposition). Assuming only a basic background in calculus and linear algebra, it enables easy understanding of mathematical reasoning, and numerous examples throughout illustrate key concepts and algorithms. End-of-chapter exercises involving theoretical derivations and small numerical problems, as well as in modeling systems like GAMS, enhance understanding and help put knowledge into practice. Accompanied by two appendices containing web links to modeling systems and models related to applications in PSE, this is an essential text for single-semester, graduate courses in process systems engineering in departments of chemical engineering.