To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In chapters 2 and 5 we discussed how to find stationary values of functions of a single variable f(x), of several variables f(x, y, …) and of constrained variables, where x, y, … are subject to the n constraints gi(x, y, …) = 0, i = 1, 2, …, n. In all these cases the forms of the functions f and gi were known, and the problem was one of finding the appropriate values of the variables x, y etc.
We now turn to a different kind of problem in which we are interested in bringing about a particular condition for a given expression (usually maximising or minimising it) by varying the functions on which the expression depends. For instance, we might want to know in what shape a fixed length of rope should be arranged so as to enclose the largest possible area, or in what shape it will hang when suspended under gravity from two fixed points. In each case we are concerned with a general maximisation or minimisation criterion by which the function y(x) that satisfies the given problem may be found.
The calculus of variations provides a method for finding the function y(x). The problem must first be expressed in a mathematical form, and the form most commonly applicable to such problems is an integral. In each of the above questions, the quantity that has to be maximised or minimised by an appropriate choice of the function y(x) may be expressed as an integral involving y(x) and the variables describing the geometry of the situation.
Since the publication of the first edition of this book, both through teaching the material it covers and as a result of receiving helpful comments from colleagues, we have become aware of the desirability of changes in a number of areas. The most important of these is that the mathematical preparation of current senior college and university entrants is now less thorough than it used to be. To match this, we decided to include a preliminary chapter covering areas such as polynomial equations, trigonometric identities, coordinate geometry, partial fractions, binomial expansions, necessary and sufficient condition and proof by induction and contradiction.
Whilst the general level of what is included in this second edition has not been raised, some areas have been expanded to take in topics we now feel were not adequately covered in the first. In particular, increased attention has been given to non-square sets of simultaneous linear equations and their associated matrices. We hope that this more extended treatment, together with the inclusion of singular value matrix decomposition, will make the material of more practical use to engineering students. In the same spirit, an elementary treatment of linear recurrence relations has been included. The topic of normal modes has been given a small chapter of its own, though the links to matrices on the one hand, and to representation theory on the other, have not been lost.
It may seem obvious that the quantitative description of physical processes cannot depend on the coordinate system in which they are represented. However, we may turn this argument around: since physical results must indeed be independent of the choice of coordinate system, what does this imply about the nature of the quantities involved in the description of physical processes? The study of these implications and of the classification of physical quantities by means of them forms the content of the present chapter.
Although the concepts presented here may be applied, with little modification, to more abstract spaces (most notably the four-dimensional space–time of special or general relativity), we shall restrict our attention to our familiar threedimensional Euclidean space. This removes the need to discuss the properties of differentiable manifolds and their tangent and dual spaces. The reader who is interested in these more technical aspects of tensor calculus in general spaces, and in particular their application to general relativity, should consult one of the many excellent textbooks on the subject.
Before the presentation of the main development of the subject, we begin by introducing the summation convention, which will prove very useful in writing tensor equations in a more compact form. We then review the effects of a change of basis in a vector space; such spaces were discussed in chapter 8. This is followed by an investigation of the rotation of Cartesian coordinate systems, and finally we broaden our discussion to include more general coordinate systems and transformations.
The second edition of Mathematical Methods for Physics and Engineering carried more than twice as many exercises, based on its various chapters, as did the first. In the Preface we discussed the general question of how such exercises should be treated but, in the end, decided to provide hints and outline answers to all problems, as in the first edition. This decision was an uneasy one as, on the one hand, it did not allow the exercises to be set as totally unaided homework that could be used for assessment purposes, but, on the other, it did not give a full explanation of how to tackle a problem when a student needed explicit guidance or a model answer.
In order to allow both of these educationally desirable goals to be achieved, we have, in the third edition, completely changed the way this matter is handled. All of the exercises from the second edition, plus a number of additional ones testing the newly added material, have been included in penultimate subsections of the appropriate, sometimes reorganised, chapters. Hints and outline answers are given, as previously, in the final subsections, but only to the odd-numbered exercises. This leaves all even-numbered exercises free to be set as unaided homework, as described below.
For the four hundred plus odd-numbered exercises, complete solutions are available, to both students and their teachers, in the form of this manual; these are in addition to the hints and outline answers given in the main text.