To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Explore the fundamentals of biomedical engineering technologies with this thought-provoking introduction, framed around modern-day global cancer inequities. Connecting engineering principles to real-world global health scenarios, this textbook introduces major technological advances in cancer care through the lens of global health inequity, discusses how promising new technologies can address this inequity, and demonstrates how novel medical technologies are adopted for real-world clinical use. It includes modular chapters designed to enable a flexible pathway through the material for students from a wide range of backgrounds; boxed discussion of contemporary issues in engineering for global health, encouraging students to explore ethical questions related to science and society; supplementary lab modules for hands-on experience in translating engineering principles into healthcare solutions; and over 200 end-of-chapter problems targeting multiple learning outcomes to solidify student understanding. Designed to equip students with all the critical, technical, and ethical knowledge they need to excel, this is the ideal introduction for students in biomedical engineering and global health.
Explore the fundamentals of biomedical engineering technologies with this thought-provoking introduction, framed around modern-day global cancer inequities. Connecting engineering principles to real-world global health scenarios, this textbook introduces major technological advances in cancer care through the lens of global health inequity, discusses how promising new technologies can address this inequity, and demonstrates how novel medical technologies are adopted for real-world clinical use. It includes modular chapters designed to enable a flexible pathway through the material for students from a wide range of backgrounds; boxed discussion of contemporary issues in engineering for global health, encouraging students to explore ethical questions related to science and society; supplementary lab modules for hands-on experience in translating engineering principles into healthcare solutions; and over 200 end-of-chapter problems targeting multiple learning outcomes to solidify student understanding. Designed to equip students with all the critical, technical, and ethical knowledge they need to excel, this is the ideal introduction for students in biomedical engineering and global health.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
This chapter describes three main numerical methods to model hazards which cannot be simplified by analytical expressions (as covered in Chapter 2): cellular automata, agent-based models (ABMs), and system dynamics. Both cellular automata and ABMs are algorithmic approaches while system dynamics is a case of numerical integration. Energy dissipation during the hazard process is a dynamic process, that is, a process that evolves over time. Reanalysing all perils from a dynamic perspective is not always justified, since a static footprint (as defined in Chapter 2) often offers a reasonable approximation for the purpose of damage assessment. However, for some specific perils, the dynamics of the process must be considered for their proper characterization. A variety of dynamic models is presented here, for armed conflicts, blackouts, epidemics, floods, landslides, pest infestations, social unrest, stampedes, and wildfires. Their implementation in the standard catastrophe (CAT) model pipeline is also discussed.
This chapter starts at the beginning and introduces propositional logic, designed for reasoning about how we combine and modify statements with simple words like “and”, “or”, “not”, and “if … then”. The beginning of the chapter is pitched at an audience that has, perhaps, never seen logic before in a formal context. After establishing the basic intuitions and definitions, we cover all the standard mathematical content of propositional logic, including the use of truth tables to provide semantic content to formulas, the idea of writing formal deductions from axioms to prove new things, and the fundamental connection between truth and provability captured by the soundness and completness theorems.
Explore the fundamentals of biomedical engineering technologies with this thought-provoking introduction, framed around modern-day global cancer inequities. Connecting engineering principles to real-world global health scenarios, this textbook introduces major technological advances in cancer care through the lens of global health inequity, discusses how promising new technologies can address this inequity, and demonstrates how novel medical technologies are adopted for real-world clinical use. It includes modular chapters designed to enable a flexible pathway through the material for students from a wide range of backgrounds; boxed discussion of contemporary issues in engineering for global health, encouraging students to explore ethical questions related to science and society; supplementary lab modules for hands-on experience in translating engineering principles into healthcare solutions; and over 200 end-of-chapter problems targeting multiple learning outcomes to solidify student understanding. Designed to equip students with all the critical, technical, and ethical knowledge they need to excel, this is the ideal introduction for students in biomedical engineering and global health.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.
Channel coding lies at the heart of digital communication and data storage. Fully updated to include current innovations in the field, including a new chapter on polar codes, this detailed introduction describes the core theory of channel coding, decoding algorithms, implementation details, and performance analyses. This edition includes over 50 new end-of-chapter problems to challenge students and numerous new figures and examples throughout.
The authors emphasize a practical approach and clearly present information on modern channel codes, including polar, turbo, and low-density parity-check (LDPC) codes, as well as detailed coverage of BCH codes, Reed–Solomon codes, convolutional codes, finite geometry codes, and product codes for error correction, providing a one-stop resource for both classical and modern coding techniques.
Assuming no prior knowledge in the field of channel coding, the opening chapters begin with basic theory to introduce newcomers to the subject. Later chapters then begin with classical codes, continue with modern codes, and extend to advanced topics such as code ensemble performance analyses and algebraic LDPC code design.
300 varied and stimulating end-of-chapter problems test and enhance learning, making this an essential resource for students and practitioners alike.
Provides a one-stop resource for both classical and modern coding techniques.
Starts with the basic theory before moving on to advanced topics, making it perfect for newcomers to the field of channel coding.
180 worked examples guide students through the practical application of the theory.