Genuinely broad in scope, each handbook in this series provides a complete state-of-the-field overview of a major sub-discipline within language study, law, education and psychological science research.
Genuinely broad in scope, each handbook in this series provides a complete state-of-the-field overview of a major sub-discipline within language study, law, education and psychological science research.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter provides a comparative survey of computational models of psychological development. To understand how computational modeling can contribute to the study of psychological development, it is important to appreciate the enduring issues in developmental psychology. The most common computational techniques applied to psychological development are production systems, connectionist networks, dynamic systems, robotics, and Bayesian inference. The chapter discusses modeling in the areas of the balance scale, past tense, object permanence, artificial syntax, similarity-to-correlation shifts in category learning, discrimination-shift learning, concept and word learning, and abnormal development. Some of the models reviewed in this chapter simulated development with programmer designed parameter changes. Variations in such parameter settings were used to implement age-related changes in both connectionist and dynamic-systems models of the A-not-B error, the Cascade-Correlation (CC) model of discrimination-shift learning, all three models of the similarity-to-correlation shift, and the autism model.
Cognitive architectures are on the one hand echoes of the original goal of creating an intelligent machine faithful to human intelligence and on the other hand attempts at theoretical unification in the field of cognitive psychology. This chapter discusses the current state of cognitive architectures to characterize four prime examples: The States, Operators, And Reasoning (SOAR) architecture, the Adaptive Control of Thought, Rational (ACT-R) theory, Executive-Process Interactive Control (EPIC) architecture, and Connectionist Learning with Adaptive Rule Induction Online (CLARION) architecture. The chapter examines a number of topics that can serve as constraints on modeling and discusses how four architectures offer solutions to help modeling in that topic area. The viewpoint of cognitive constraint is different from the perspective of how much functionality an architecture can provide, as expressed by, for example, Anderson and Lebiere.
In this chapter, computer models of cognition focusing on the use of neural networks are reviewed. This chapter begins by placing connectionism in its historical context, leading up to its formalization in Rumelhart and Mc-Clelland's two-volume Parallel Distributed Processing. Three important early models illustrating some of the key properties of connectionist systems are discussed, as well as how the novel theoretical contributions of these models arose from their key computational properties. Connectionism offers an explanation of human cognition because instances of behavior in particular cognitive domains can be explained with respect to a set of general principles and the conditions of the specific domains. Connectionist theory has had a widespread influence on cognitive theorizing, and this influence was illustrated by considering connectionist contributions to our understanding of memory, cognitive development, acquired cognitive impairments, and developmental deficit.
This chapter reviews a contingency learning against the background of recent formal models of animal learning. It reviews a very substantial amount of research including not only human causal and predictive learning but also category learning and multiple-cue probability learning. The development of theoretical models of predictive learning has been stimulated to an enormous extent by demonstrations that cues compete with each other to gain control over behavior (so-called cue interaction effects). In causal learning scenarios, the cue and outcome are provided, via the instructions, with particular causal roles. In most cases, then, the cues are not only potentially predictive of the outcome but also cause it. Despite the challenging nature of the evidence against an associative perspective as a unique account of human predictive learning, there is also evidence that the influence of causal knowledge or rule learning is not necessarily pervasive.