Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-28T21:26:16.811Z Has data issue: false hasContentIssue false

Alexandrov sphere theorems for $ W^{2,n} $-hypersurfaces

Published online by Cambridge University Press:  26 August 2025

Mario Santilli*
Affiliation:
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Universitá degli Studi dell’Aquila, L’Aquila, Italy (mario.santilli@univaq.it)
Paolo Valentini
Affiliation:
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica, Universitá degli Studi dell’Aquila, L’Aquila, Italy (paolo.valentini@graduate.univaq.it)
*
*Corresponding author.
Rights & Permissions [Opens in a new window]

Abstract

We prove that the proximal unit normal bundle of the subgraph of a $W^{2,n} $-function carries a natural structure of Legendrian cycle. This result is used to obtain an Alexandrov-type sphere theorem for hypersurfaces in $ \mathbf{R}^{n+1} $, which are locally graphs of arbitrary $W^{2,n} $-functions. We also extend the classical umbilicality theorem to $ W^{2,1} $-graphs, under the Lusin (N) condition for the graph map.

Information

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Royal Society of Edinburgh.

1. Introduction

1.1. Background and motivation

It is important and natural to understand if classical results of smooth differential geometry still hold if one weakens the regularity hypothesis. Since most of the classical differential-geometric techniques rely on some smoothness assumption, such a question often calls for substantial generalizations of the existing methods.

Our starting point in this paper is the following general version of the sphere theorem by Alexandrov [Reference Aleksandrov1].

Theorem (Alexandrov). A bounded and connected C 2-domain $ \Omega \subseteq \mathbf{R}^{n+1} $ must be a round ball, provided there exist a C 1-function $ \varphi : \mathbf{R}^n \rightarrow \mathbf{R} $ and $ \lambda \in \mathbf{R} $ such that

\begin{equation*} \varphi({\chi}_{\Omega,1}(p), \ldots, {\chi}_{\Omega,n}(p)) = \lambda \end{equation*}

and

(1.1)\begin{equation} \frac{\partial \varphi}{\partial t_i}({\chi}_{\Omega, 1}(p), \ldots , {\chi}_{\Omega, n}(p)) \gt 0 \quad \text{for}\ i = 1, \ldots , n , \end{equation}

for every $ p \in \partial \Omega $. Here $ {\chi}_{\Omega,1} \leq \ldots \leq {\chi}_{\Omega,n} $ are the principal curvatures of $ \partial \Omega $.

The simplest case of this result is the famous rigidity result for hypersurfaces with constant mean curvature. More generally, choosing $ \varphi = \sigma_k $, where σk is the k-th elementary symmetric function (see definition 5.11), one can deduce (see [Reference Ros36, Appendix]) that if $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded C 2-domain such that $ H_{\Omega, k} = \sigma_k({\chi}_{\Omega,1}, \ldots, {\chi}_{\Omega,n}) $ is constant for some k, then Ω is a round ball. This result was proved by Alexandrov using the moving plane method. A completely different approach to treat the special case $ \varphi = \sigma_k $ and based on integral identities that was found by Ros in [Reference Ros35] and Montiel–Ros [Reference Montiel and Ros26].

It is natural to ask about generalization of the sphere theorem beyond the classical smooth regime. This problem was addressed by Alexandrov in [Reference Alexandrov2], where he generalized the sphere theorem to bounded domains whose boundary can be locally represented as graph of C 1-functions with second-order distributional derivatives in Ln, and under the uniform ellipticity condition

(1.2)\begin{equation} 0 \lt \mu_1 \leq \frac{\partial \varphi}{\partial t_i}({\chi}_{\Omega, 1}(p), \ldots , {\chi}_{\Omega, n}(p)) \leq \mu_2 \lt \infty \quad \text{for}\ i = 1, \ldots , n , \end{equation}

for $ \mathcal{H}^n $ a.e. $ p \in \partial \Omega $. Here $ {\chi}_{\Omega,1} \leq \ldots \leq {\chi}_{\Omega,n} $ are the weak principal curvatures of $ \partial \Omega $. Obviously, (1.2) reduces to (1.1) for C 2-domains. The proof of this result is based on the generalization of the moving plane method by means of maximum principles for $ W^{2,n} $-solutions of uniformly elliptic partial differential equations. Both the hypothesis of C 1-regularity and the uniform ellipticity condition (1.2) are important for the applicability of this method. On the other hand, it is natural to ask if these hypotheses are convenient conditions rather than necessary restrictions. Additionally, arbitrary $ W^{2,n} $-functions exhibit very different behaviours than C 1-functions. For instance, T. Toro in [Reference Toro43] constructs a $ W^{2,n}$-function with a (countable) dense subset of singular points, and J. Fu in [Reference Fu17] points out the existence of $ W^{2,n} $-functions on Rn whose gradient has a dense graph in $ \mathbf{R}^n \times \mathbf{R}^n $.

With these motivations in mind, in this paper, we generalize Alexandrov sphere theorem to arbitrary $ W^{2,n} $-domains (i.e. open sets which are locally subgraphs of $ W^{2,n} $-functions) when φ is a symmetric function of the weak principal curvatures. Moreover, we prove our result under a more general hypothesis than uniform ellipticity, namely the degenerate ellipticity condition (1.3), cf. theorem C. Instead of using a moving plane method, we extend the Montiel–Ros integral-geometric approach to prove our result. In recent years, Montiel–Ros argument has been generalized to some classes of non-smooth geometric sets, namely sets of finite perimeter with bounded distributional mean curvature (see [Reference Delgadino and Maggi8] and [Reference De Rosa, Kolasinski and Santilli7]) and sets of positive reach (cf. [Reference Hug and Santilli14]). On the other hand, the aforementioned examples show that $ W^{2,n} $-domains exhibit some very different behaviour than the sets treated in [Reference Delgadino and Maggi8], [Reference De Rosa, Kolasinski and Santilli7], or in [Reference Hug and Santilli14]. As explained below, this requires a substantially novel approach.

1.2. Legendrian cycles and sphere theorem

Here we discuss the generalization of the Montiel–Ros method (see [Reference Montiel and Ros26]) to $ W^{2,n} $-domains. In the smooth setting, this method is based on a clever combination of the Heintze–Karcher inequality (see [Reference Heintze and Karcher12] and [Reference Montiel and Ros26]) with the variational formulae for the higher-order mean curvature integrals of a C 2-domain (cf. [Reference Hsiung13] and [Reference Reilly31]). As noted by Fu (cf. [Reference Fu16]), the variational formulae are strictly related to the structure of Legendrian cycle carried by the unit-normal bundle of a smooth submanifold. We recall that an integer multiplicity locally rectifiable n-current T of $ \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ with compact support in $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ is called a Legendrian cycle of $ \mathbf{R}^{n+1} $ if and only if $ \partial T = 0 $ and $ T \operatorname{\llcorner} \alpha = 0 $, where α is the contact form in $ \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ (see §2). Indeed, it is a simple exercise to prove that the unit-normal bundle of a C 2-domain carries a natural structure of Legendrian cycle. It is also well known that if f is a $ W^{2,n} $-function on an open subset U of $ \mathbf{R}^{n+1} $ then there exists an integral current $ \mathbb{D}(f) $ (also denoted by $ [df] $) of $ U \times \mathbf{R}^n $ with zero distributional boundary (i.e. an integral cycle), which serves as a substitute for the graph of the differential of f (see [Reference Fu15], [Reference Jerrard32, (4.1) p. 332], and [Reference Fu17]). This current is called differential cycle of f. The construction of this integral cycle can be naturally extended to construct a Legendrian cycle associated with the graph of f. However, this information alone is not sufficient to extend the Montiel–Ros method, as such extension seems to require a crucial geometric property for the carrier W of this Legendrian cycle: namely that the segments $ a + t u $ with $ t \geq 0 $, at least for ‘many’ points $(a, u) \in W$, must be distance-minimizing segments near 0. This observation leads us to consider the proximal unit-normal bundle, which is defined for an arbitrary set $ C \subseteq \mathbf{R}^{n+1} $ as

\begin{equation*} \operatorname{nor}(C) = \{(x,u) \in \overline{C} \times \mathbf{S}^n: {\rm dist}(x+su,C) = s \; \text{for some}\ s \gt 0 \}. \end{equation*}

It is always true that $ \operatorname{nor}(C) $ is a Legendrian rectifiable set of $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ (see definition 2.1), namely it can be $ \mathcal{H}^n $ almost everywhere covered by a countable union of n-dimensional C 1-submanifold of $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ and the contact form α vanishes on the approximate tangent plane of $ \operatorname{nor}(C) $ at $ \mathcal{H}^n $ almost all points; cf. lemma 2.11. On the other hand, it is not always true that $ \mathcal{H}^n\operatorname{\llcorner} \operatorname{nor}(C) $ is a Radon measure over $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ (for instance even when C coincides with the closure of a smooth submanifold with bounded mean curvature, cf. lemma A.3), henceforth, $ \operatorname{nor}(C) $ cannot always carry an integer-multiplicity rectifiable current.

Our first and central result asserts that the proximal unit normal bundle of a $ W^{2,n} $-domain carries a natural structure of Legendrian cycle. More precisely, denoting by $ \pi_0 : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} $ the projection onto the first factor, cf. (2.2), and by E ʹ a volume form of $ \mathbf{R}^{n+1} $, cf. (2.5), we prove the following result.

Theorem A (cf. theorem 3.9 and theorem 5.7). If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $W^{2,n} $-domain then $ \mathcal{H}^n(\operatorname{nor}(\Omega)) \lt \infty $ and there exists a unique n-dimensional Legendrian cycle $T$ such that

\begin{equation*} T = (\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)) \wedge \eta, \end{equation*}

where η is a $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega) $ measurable n-vectorfield such that

\begin{equation*} | \eta(x, u)| =1, \quad \eta(x, u)\ \text{is simple}, \end{equation*}
\begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega), (x, u))\ \text{is associated with}\ \eta(x, u) \end{equation*}

and

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta(x,u)) \wedge u, E'\rangle \gt 0 \end{equation*}

for $ \mathcal{H}^n $ a.e. $(x,u) \in \operatorname{nor}(\Omega) $. We write $ T = N_\Omega $.

A simple functional-analytic reformulation of theorem A, which can be proved along the same lines as theorem 3.9, states what follows.

Theorem B.

Suppose $ f \in W^{2,n}(U) $. Then $ \mathbb{D}(f) $ is a unit-density integral cycle carried over $\{(x, \nabla f(x)) : x \in \mathcal{S}(f) \} $, where $ \mathcal{S}(f) $ is the set of pointwise twice-differentiabily points of $ {{f}} $ (cf. definition 2.15), and $ \nabla f $ is the pointwise gradient of $ {{f}} $.

In this direction, we recall that $ \mathcal{L}^n(U \setminus \mathcal{S}(f)) =0 $ by lemma 2.16, and the subtlety of theorem B becomes more transparent if we observe that $ \mathcal{S}(f) $ cannot be replaced by the set of pointwise differentiability points $ {\rm Diff}(f) $ of f: indeed, there exists $ f \in C^1\big([-1,1]^n\big) \cap W^{2,n}\big((-1,1)^n\big) $ such that

\begin{equation*} [-1,1]^n \subseteq \nabla f([-1,1] \times \{0\}^{n-1}), \end{equation*}

cf. [Reference Roskovec37], and denoting by $ \overline{\nabla f} $ the graph map of the gradient of f, we use lemma 3.5 to conclude that $\mathcal{H}^n\big(\overline{\nabla f}(U) \setminus \overline{\nabla f}(\mathcal{S}(f))\big) \gt 0 $.

Combining theorem A with the variational formulae for Legendrian cycles in [Reference Fu16], we can extend Reilly variational formulae (see [Reference Reilly31]) to $ W^{2,n} $-domains, whence we deduce the Minkowski–Hsiung formulae in our setting (see theorems 5.15 and 5.17). Moreover, the Heintze–Karcher inequality for $ W^{2,n} $-domains (see theorem 6.1) can be deduced from the general inequality [Reference Hug and Santilli14, Theorem 3.20] employing some of the structural properties of the proximal unit-normal bundle (see theorem 5.7(2)–(3)), that already play a role in theorem A.

Combining these results we can eventually prove our generalization of Alexandrov sphere theorem.

Theorem C (cf. theorem 6.2 and remark 6.3)

A bounded and connected $ W^{2,n} $-domain $ \Omega \subseteq \mathbf{R}^{n+1} $ must be a round ball, provided there exist $ k \in \{2, \ldots , n\} $ and $ \lambda \in \mathbf{R} $ such that

\begin{equation*} \sigma_k({\chi}_{\Omega,1}(p), \ldots , {\chi}_{\Omega, n}(p)) = \lambda \end{equation*}

and

(1.3)\begin{equation} \frac{\partial \sigma_k}{\partial t_i}({\chi}_{\Omega, 1}(p), \ldots , {\chi}_{\Omega, n}(p)) \geq 0 \quad \text{for}\ i = 1, \ldots , n \end{equation}

for $ \mathcal{H}^n $ a.e. $ p \in \partial \Omega $.

If k = 1 the result would reduce to the smooth Alexandrov’s sphere theorem for constant mean curvature hypersurfaces, since the condition $ H_{\Omega,1}(z) = \lambda $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $ implies that $ \partial \Omega $ is smooth by Allard’s regularity theorem (notice that by theorem 5.15 the function $ H_{\Omega,1} $ is the generalized mean curvature of $ \partial \Omega $ in the sense of varifolds, see [Reference Allard45]). No analogous regularity result is available when $ k \geq 2 $.

1.3. The support of Legendrian cycles

Theorem A finds natural application in other problems, beyond the rigidity questions that we have considered so far. In §4, we employ it to answer a question implicit in [Reference Rataj and Zähle29]. In [Reference Rataj and Zähle29, Remark 2.3], the authors asked if there exist n-dimensional Legendrian cycles in $ \mathbf{R}^{n+1} $ whose support is not locally $ \mathcal{H}^n $-rectifiable or even has positive $ \mathcal{H}^{n+1} $-measure. Combining theorem A with an observation by J. Fu in [Reference Fu17] about the existence of $ W^{2,n} $-functions whose differential has a graph dense in $ \mathbf{R}^n \times \mathbf{R}^n $, we prove the following result.

Theorem D.

There exist n-dimensional Legendrian cycles of $ \mathbf{R}^{n+1} $ whose support has positive $ \mathcal{H}^{2n} $-measure.

1.4. The Nabelpunktsatz

In the final section of this paper, we study the problem of extending the classical umbilicality theorem (or Nabelpunktsatz). The classical proof of this theorem works for hypersurfaces that are at least C 3-regular. A proof for C 2-hypersurfaces is given in [Reference Souam and Toubiana42] (see also [Reference Pauly28] and [Reference Mantegazza22]). Considering more general hypersurfaces with curvatures defined only almost everywhere, the question about the validity of the Nabelpunktsatz goes back to the classical paper of Busemann and Feller [Reference Busemann and Feller4], where they also pointed out the existence of non-spherical convex C 1-hypersurfaces which are umbilical at almost every point; see also remark 7.8. In [Reference De Rosa, Kolasinski and Santilli7], the Nabelpunksatz is extended to $ C^{1,1} $-hypersurfaces. Here we obtain the following far-reaching generalization of this result.

Theorem E (cf. theorem 7.6)

The Nabelpunktsatz holds for almost everywhere umbilical $ W^{2,1} $-graphs, provided the Lusin condition (N) holds for the graph function (cf. definition 7.5).

The Lusin condition (N) is necessary in order to guarantee the existence of weak curvatures on the graphs (i.e. second-order rectifiability) and it is automatically verified for graphs of $ W^{2,p} $-functions, with $ p \gt \frac{n}{2} $; cf. remark 7.7.

2. Notation and background

Given a set of parameters $ \{p_1, p_2, \ldots p_n\}$, we denote a generic positive constant depending only $ p_1, \ldots , p_n $ by $ c(p_1, \ldots , p_n) $.

If $ f : S \rightarrow T $ is a function we define

(2.1)\begin{equation} \overline{f} : S \rightarrow S \times T, \qquad \overline{f}(x) = (x, f(x)). \end{equation}

The characteristic function of a set X is $\bf{1}_{X}$ and the Grassmannian of m-dimensional subspaces of Rk is $ \mathbf{G}(k,m) $. Moreover, we often use the following projection maps

(2.2)\begin{equation} \pi_0 : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} \quad \pi_1 : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} \end{equation}

defined as $ \pi_0(x,u) = x $ and $ \pi_1(x,u) = u $.

In this paper, we use the symbol $ \bullet $ to denote scalar products. In particular, we fix a scalar product $ \bullet $ on $ \mathbf{R}^{n+1} $,

(2.3)\begin{equation} \text{an orthonormal basis}\ e_1, \ldots , e_{n+1}\ \text{of}\ \mathbf{R}^{n+1}\ \text{and its dual basis } e'_1, \ldots, e'_{n+1}. \end{equation}

For a subset S of an Euclidean space, $ \overline{S} $ is the closure of S. We use the symbols D and $ \nabla $ for the classical differential and the gradient. If $ f : U \rightarrow \mathbf{R} $ is a continuous function defined on an open set U, we denote the set of $ x \in U $, where f is pointwise differentiable by

\begin{equation*} {\rm Diff}(f). \end{equation*}

2.1. Basic notions from geometric measure theory

In this paper, we use standard notation from geometric measure theory, for which we refer to [Reference Federer10]. For the reader’s convenience, we recall some basic notions here.

For a subset $ X \subseteq \mathbf{R}^m $ and a positive integer µ, we define $ \operatorname{Tan}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X,a) $ to be the set of all $ v \in \mathbf{R}^m $ such that

\begin{equation*} \Theta^{\ast \mu}\big(\mathcal{H}^\mu \operatorname{\llcorner} X \cap \{x : |r(x-a) - v | \lt \epsilon\; \text{for some}\ r \gt 0 \}, a\big) \gt 0 \end{equation*}

for every ϵ > 0. This is a cone with vertex at 0 and we set

\begin{equation*} \operatorname{Nor}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X,a) = \{v \in \mathbf{R}^m : v \bullet u \leq 0 \; \text{for}\ u \in \operatorname{Tan}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X,a) \}. \end{equation*}

Suppose $ X \subseteq \mathbf{R}^{m} $ and f maps a subset of Rm into Rk. Given a positive integer µ and $ a \in \mathbf{R}^m $, we say that f is $ \mathcal{H}^\mu \operatorname{\llcorner} X $ approximately differentiable at a (cf. [Reference Federer10, 3.2.16]) if and only if there exists a map $ g : \mathbf{R}^m \rightarrow \mathbf{R}^k $ pointwise differentiable at a such that

\begin{equation*} \Theta^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X \cap \{b: f(b) \neq g(b)\}, a) =0. \end{equation*}

In this case, (see [Reference Federer10, 3.2.16]) f determines the restriction of $ D g(a) $ on the approximate tangent cone $ \operatorname{Tan}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X, a) $ and we define

\begin{equation*} \operatorname{ap} D f(a) = D g(a)| \operatorname{Tan}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X,a). \end{equation*}

Suppose $ X \subseteq \mathbf{R}^m $ and µ is a positive integer. We say that X is countably $ \mathcal{H}^\mu $-rectifiable if there exist countably many µ-dimensional C 1-submanifolds $ \Sigma_i $ of $ \mathbb{R}^m $ such that

\begin{equation*} \mathcal{H}^\mu\big(X \setminus\bigcup_{i =1}^\infty \Sigma_i \big) = 0. \end{equation*}

It is well known that if X is countably $ \mathcal{H}^\mu $-rectifiable with $ \mathcal{H}^\mu(X) \lt \infty $, then $ \operatorname{Tan}^\mu(\mathcal{H}^\mu\operatorname{\llcorner} X, a) $ is a µ-dimensional plane at $ \mathcal{H}^\mu $ a.e. $ a \in X $, and every Lipschitz function $ f : X \rightarrow \mathbf{R}^k $ has an $\mathcal{H}^\mu \operatorname{\llcorner} X $-approximate differential $ \operatorname{ap} D f(a) : \operatorname{Tan}^\mu(\mathcal{H}^\mu \operatorname{\llcorner} X, a) \rightarrow \mathbb{R}^k $ at $ \mathcal{H}^\mu $ a.e. $ a \in X $. At such points a we define for $ h \in \{1, \ldots , k\} $ the h-dimensional approximate Jabobian of f

\begin{equation*} J_h^X f (a) = \sup \big\{\big| [{\textstyle \bigwedge_h \operatorname{ap} D f(a)}](\xi) \big| : \xi \in {\textstyle \bigwedge_h \operatorname{Tan}^\mu(\mathcal{H}^\mu\operatorname{\llcorner} X, a)}, \, | \xi | = 1 \big\} \end{equation*}

(see (2.4) for the definition of $ {\textstyle \bigwedge_h \operatorname{ap} D f(a)} $). The approximate Jacobian naturally appears in area and coarea formula for f; see [Reference Federer10, 3.2.20, 3.2.22].

2.2. Differential forms and currents

Let V be a vector space. We denote by $ v_1 \wedge \cdots \wedge v_m $ the simple m-vector obtained by the exterior multiplication of vectors $ v_1, \ldots , v_m $ in V and $ \bigwedge_m V $ is the vector space generated by all simple m vectors of V. Each linear map $ f : V \rightarrow V' $ can be uniquely extended to a linear map

(2.4)\begin{equation} {\textstyle \bigwedge_m} f : {\textstyle \bigwedge_m} V \rightarrow {\textstyle \bigwedge_m} V' \end{equation}

such that $ {\textstyle \bigwedge_m} f(v_1 \wedge \cdots \wedge v_m) = f(v_1) \wedge \cdots \wedge f(v_m) $ for every $ v_1, \ldots , v_m \in V $ (cf. [Reference Federer10, 1.3.1–1.3.3]).

The vector space of all alternating m-linear functions $ f : V^m \rightarrow \mathbf{R} $ (i.e. $ f(v_1, \ldots, v_m) =0 $ whenever $ v_1, \ldots v_m \in V $ and $ v_i = v_j $ for some ij) is denoted by $ \bigwedge^m V $. There is a natural isomorphism between $ \bigwedge^m V $ and the space of all linear R-valued maps on $ \bigwedge_m V $ (cf. [Reference Federer10, 1.4.1–1.4.3]). It is often convenient to use the following customary notation (see [Reference Federer10]):

\begin{equation*} \langle \xi, h \rangle = h(\xi) \quad \text{whenever}\ \xi \in {\textstyle\bigwedge_m} V \ \text{and}\ h \in {\textstyle\bigwedge^m} V . \end{equation*}

Using the notation introduced in (2.3), we define

(2.5)\begin{equation} E= e_1 \wedge \cdots \wedge e_{n+1} \in {\textstyle \bigwedge_{n+1}} \mathbf{R}^{n+1} \quad \text{and} \quad E' = e'_1 \wedge \cdots \wedge e'_{n+1} \in {\textstyle \bigwedge^{n+1}}\mathbf{R}^{n+1}. \end{equation}

If V is an inner product space, then both $ {\textstyle \bigwedge_m V} $ and $ {\textstyle \bigwedge^m V} $ can be endowed with natural scalar products, whose associated norms are denoted by $|\cdot | $; see [Reference Federer10, 1.7.5].

Suppose $ U \subseteq \mathbf{R}^p$ is open and $ k \geq 0 $. A k-form is a smooth map $ \phi : U \rightarrow \bigwedge^k \mathbf{R}^p $ (if k = 0 we set $\bigwedge^0 \mathbf{R}^p = \mathbf{R} $). Following [Reference Federer10, 4.1.1, 4.1.7], we denote by $ \mathcal{E}^k(U) $ the space of all smooth k-forms on U and we denote by $ \mathcal{D}^k(U) $ the space of all k-forms with compact support in U. If $ \phi \in \mathcal{E}^k(U) $, we denote by $ d\, \phi $ the exterior derivative of ϕ (cf. [Reference Federer10, 4.1.6]). Moreover, if f is a smooth function mapping U into Rq and ψ is a k-form defined on an open subset V of Rq with $ f(U) \subseteq V $, then we define the k-form $ f^{\#} \psi $ on U by the formula

\begin{equation*} \langle v_1 \wedge \cdots \wedge v_k, f^{\#} \psi(x) \rangle = \langle {\textstyle \bigwedge_{k}}D f(x)(v_1 \wedge \cdots \wedge v_k), \psi(f(x)) \rangle\end{equation*}

for $ x \in U $ and $ v_1, \ldots , v_k \in \mathbf{R}^p $. We refer to [Reference Federer10, 4.1.6] for the basic properties of $ f^\# $. Functions mapping a subset of U into $ \bigwedge_k(\mathbf{R}^p) $ are called k-vectorfields.

Suppose $ U \subseteq \mathbf{R}^p$ is open and $ k \geq 0 $. A k-current is a continuous R-valued linear map T on $ \mathcal{D}^k(U) $, with respect to the standard topology (cf. [Reference Federer10, 4.1.1]) and we denote the space of all k-currents on U by $ \mathcal{D}_k(U) $. We say that a sequence $ T_\ell \in \mathcal{D}_k(U)$ weakly converges to $ T\in \mathcal{D}_k(U) $ if and only if

\begin{equation*} T_\ell(\phi) \to T(\phi)\qquad \text{for all}\ \phi \in \mathcal{D}^k(U) . \end{equation*}

If T is a k-current on U, then the boundary of T is the $ (k-1) $-current $ \partial T \in \mathcal{D}_{k-1}(U) $ given by

\begin{equation*} \partial T(\phi) = T(d\, \phi) \qquad \text{for all}\ \phi \in \mathcal{D}^k(U) , \end{equation*}

while the support of T is defined as

\begin{equation*} {\rm spt}(T) = U \setminus \bigcup\big\{V : \text{V} \subseteq U\ \text{open and}\ T(\phi) =0 \ \text{for all}\ \phi \in \mathcal{D}^k(V) \}. \end{equation*}

If $ T \in \mathcal{D}_k(U) $ and $ {\rm spt}(T) $ is a compact subset of U, then T can be uniquely extended to a continuous linear map on $ \mathcal{E}^k(U) $. If $ \psi \in \mathcal{E}^h(U) $, $ T \in \mathcal{D}_k(U) $ and $ h \leq k $ we set

\begin{equation*} (T \operatorname{\llcorner} \psi)(\phi) = T(\psi \wedge \phi) \qquad \text{for all}\ \phi \in \mathcal{D}^{k-h}(U) . \end{equation*}

If $ T \in \mathcal{D}_k(U) $, V is an open subset of Rq and $ f : U \rightarrow V $ is a smooth map such that $ f | {\rm spt} (T) $ is proper, then noting that $ {\rm spt} f^\# \phi \subseteq f^{-1}({\rm spt}\, \phi) $ and $ f^{-1}({\rm spt}\, \phi) \cap {\rm spt}\, T $ is a compact subset of U for each $ \phi \in \mathcal{D}^k(V) $, we define $ f_{\#}T \in \mathcal{D}_k(V) $ by the formula

(2.6)\begin{equation} f_\#T(\phi) = T\big[ \gamma \wedge f^\#\phi\big], \end{equation}

whenever $ \phi \in \mathcal{D}^k(V) $ and $ \gamma \in \mathcal{D}^0(U) $ with $ f^{-1}({\rm spt} \phi) \cap {\rm spt} T \subseteq {\rm interior}\,[\gamma^{-1}(\{1\})] $. If $ {\rm spt}(T) $ is a compact subset of U then $ f_\#T(\phi) = T(f^\# \phi) $ whenever $ \phi \in \mathcal{E}^k(V) $. We refer to [Reference Federer10, 4.1.7] for the basic properties of the map $ f_\# $.

We say that a k-current $ T \in \mathcal{D}_k(U) $ is a integer multiplicity locally rectifiable k-current of U provided

(2.7)\begin{equation} T(\phi) = \int_{M}\langle \eta(x), \phi(x) \rangle \, d\mathcal{H}^k(x) \qquad \text{for all}\ \phi \in \mathcal{D}^k(U) , \end{equation}

where $ M \subseteq U $ is $ \mathcal{H}^k $-measurable and countably $ \mathcal{H}^k $-rectifiable and η is an $ \mathcal{H}^k \operatorname{\llcorner} M $-measurable k-vectorfield such that:

  1. (1) $ \int_{K \cap M} | \eta|\, d\mathcal{H}^k \lt \infty $ for every compact subset K of U,

  2. (2) $ \eta(x) $ is a simple and $ | \eta(x) | $ is a positive integer for $ \mathcal{H}^k $ a.e. $ x \in M $,

  3. (3) $ \operatorname{Tan}^k(\mathcal{H}^k \operatorname{\llcorner} M,x) $ is associated with $ \eta(x) $ for $ \mathcal{H}^k $ a.e. $ x \in M $.

We refer to M as carrier of T.

2.3. Legendrian currents

Here we introduce the central notion of Legendrian cycle and we collect some fundamental facts.

Let $ \alpha \in \mathcal{E}^1(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}) $ be the contact 1-form of $ \mathbf{R}^{n+1} $, which is defined by the formula

\begin{equation*} \langle (y,v),\alpha(x,u) \rangle = y \bullet u \quad \text{for}\ (x,u), (y,v) \in \mathbf{R}^{n+1} . \end{equation*}

Definition 2.1. Let $ M \subseteq \mathbf{R}^{n+1} \times \mathbf{S}^n $ be a countably $ \mathcal{H}^n $ rectifiable set. We say that $ {{M}} $ is a Legendrian rectifiable set if and only if for every $ Q \subseteq M $ with $ \mathcal{H}^n(Q) \lt \infty $ we have that

\begin{equation*} \alpha(x,u) | \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} Q, (x,u)) =0 \end{equation*}

for $ \mathcal{H}^n $ a.e. $(x,u) \in Q $.

Remark 2.2. In relation with definition 2.1, we recall that $ \operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} Q, (x,u)) $ is an n-dimensional plane for $ \mathcal{H}^n $ a.e. $(x,u) \in Q $.

Definition 2.3. Let $ W \subseteq \mathbf{R}^{n+1} $ be an open set and let $ {{T}} $ be an integer-multiplicity locally rectifiable $ {{n}} $-current of $ W \times \mathbf{R}^{n+1} $ with $ {\rm spt}(T) \subseteq W \times \mathbf{S}^n $.

We say that $ {{T}} $ is Legendrian cycle of $ {{W}} $ if $ T \operatorname{\llcorner} \alpha =0 $ and $ \partial T =0 $.

Remark 2.4. If T is a Legendrian cycle and M is a carrier of T, then M is a Legendrian rectifiable set (with $ \mathcal{H}^n(K \cap M) \lt \infty $ for every $ K \subseteq \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ compact).

Lemma 2.5. Suppose $W_1, \ldots , W_m \subseteq \mathbf{R}^{n+1} $ are bounded open sets and $ T \in \mathcal{D}_{n}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}) $ such that $ T\operatorname{\llcorner} (W_i \times \mathbf{R}^{n+1}) $ is a Legendrian cycle of $ {{W}}_i $ for every $ i = 1, \ldots , m $ and $ {\rm spt}(T) $ is a compact subset of $ \bigcup_{i=1}^m W_i \times \mathbf{S}^n $. Then $ {{T}} $ is a Legendrian cycle of $ \mathbf{R}^{n+1} $.

Proof. For each $ i = 1, \ldots , m $ choose an open set Vi with compact closure in Wi and $ f_i \in C^\infty(\mathbf{R}^{n+1}) $ such that $ {\rm spt}(f_i) $ is a compact subset of Wi, $ \sum_{i=1}^m f_i(x) = 1 $ for every $ x \in \bigcup_{i=1}^m V_i $ and $ {\rm spt}(T) \subseteq \bigcup_{i=1}^m V_i \times \mathbf{S}^n $. Then $ T = T \operatorname{\llcorner} (\sum_{i=1}^m f_i) $, $ \sum_{i=1}^m d f_i =0 $ on $ \bigcup_{i=1}^m V_i $,

\begin{equation*} \langle \phi, T\operatorname{\llcorner} \alpha \rangle = \sum_{i=1}^m \langle f_i\phi, T \operatorname{\llcorner} \alpha \rangle =0 \end{equation*}

and

\begin{equation*} \partial T(\phi) = \sum_{i=1}^m \partial T(f_i \phi) + T\Big[\Big({\textstyle\sum_{i=1}^m}df_i\Big)\wedge \phi \Big] =0 \end{equation*}

for every $ \phi \in \mathcal{D}^{n-1}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}) $.

For the next definition recall (2.3) and (2.5).

Definition 2.6. Lipschitz–Killing forms (cf. [Reference Zähle47])

For $ k \in \{0, \ldots , n\} $ the k-th Lipschitz–Killing form of $ \mathbf{R}^{n+1} $, $ \varphi_k \in \mathcal{E}^n(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1})$, is defined by the formula

\begin{align*} \langle \xi_1 \wedge \cdots \wedge \xi_n, \varphi_k(x,u) \rangle =\sum_{\sigma \in \Sigma_{n,k}} \langle \pi_{\sigma(1)}(\xi_1)\wedge \cdots \wedge \pi_{\sigma(n)}(\xi_n) \wedge u, E'\rangle, \end{align*}

for every $ \xi_1, \ldots , \xi_n \in \mathbf{R}^{n+1}\times \mathbf{R}^{n+1}$, where

\begin{equation*} \Sigma_{n,k} = \bigg\{\sigma: \{1, \ldots , n\} \rightarrow \{0,1\}: \sum_{i=1}^n \sigma(i) = n-k \bigg\} \end{equation*}

and π 0 and π 1 are the projections defined in (2.2).

For $ 1 \leq k \leq m $, we denote by $ \Lambda(m,k) $ the set of all increasing mappings from $ \{1, \ldots, k\} $ into $ \{1, \ldots, m\} $.

Lemma 2.7. (cf. [Reference Fu16, Lemma 3.1])

The exterior derivatives of the Lipschitz–Killing differential forms satisfy the following equations:

(2.8)\begin{equation} \langle \xi_1 \wedge \cdots \wedge \xi_{n+1}, d\, \varphi_k(x,u) \rangle = \langle \xi_1 \wedge \cdots \wedge\xi_{n+1}, \alpha (x,u) \wedge (n-k+1) \varphi_{k-1}(x,u) \rangle \end{equation}

for $ k = 1, \ldots, n $ and

(2.9)\begin{equation} \langle \xi_1 \wedge \cdots \wedge \xi_{n+1}, d\, \varphi_0 (x,u) \rangle =0, \end{equation}

whenever $ \xi_1, \ldots , \xi_{n+1} \in \operatorname{Tan}(\mathbf{R}^{n+1} \times \mathbf{S}^n, (x,u)) $ and $ (x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n $.

Proof. We fix $ (x,u)\in \mathbf{R}^{n+1} \times \mathbf{S}^n $.

Suppose $ k \geq 0 $ and notice that $ \varphi_k : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow {\textstyle \bigwedge^n}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}) $ is a linear map. Henceforth, we compute (cf. [Reference Federer10, p. 352])

(2.10)\begin{align} & \langle \xi_1 \wedge \cdots \wedge \xi_{n+1}, d\,\varphi_k(x,u) \rangle\\ & \quad = \sum_{j=1}^{n+1} (-1)^{j-1}\, \big\langle \xi_1 \wedge \cdots \wedge \xi_{j-1} \wedge \xi_{j+1} \wedge \cdots \wedge \xi_{n+1}, \langle \xi_j , D \varphi_k(x,u)\rangle \big\rangle \notag \\ & \quad = \sum_{j=1}^{n+1} (-1)^{j-1}\, \big\langle \xi_1 \wedge \cdots \wedge \xi_{j-1} \wedge \xi_{j+1} \wedge \cdots \wedge \xi_{n+1}, \varphi_k(\xi_j) \big\rangle \notag\\ & \quad = \sum_{j=1}^{n+1} (-1)^{j-1} \sum_{\sigma \in \Sigma_{n,k}} \langle \pi_{\sigma(1)}(\xi_1) \wedge \cdots \wedge \pi_{\sigma(j-1)}(\xi_{j-1}) \wedge \pi_{\sigma(j)}(\xi_{j+1}) \wedge \cdots \notag\\ & \qquad\, \cdots \wedge \pi_{\sigma(n)}(\xi_{n+1}) \wedge \pi_1(\xi_j), E' \rangle \notag \\ & \quad = (-1)^n \sum_{j=1}^{n+1} \sum_{\sigma \in \Sigma_{n,k}} \langle \pi_{\sigma(1)}(\xi_1) \wedge \cdots \wedge \pi_{\sigma(j-1)}(\xi_{j-1}) \wedge \pi_1(\xi_j) \wedge \pi_{\sigma(j)}(\xi_{j+1}) \wedge \cdots \notag \\ & \qquad\cdots \wedge \pi_{\sigma(n)}(\xi_{n+1}), E' \rangle \notag \end{align}

for $ \xi_1, \ldots, \xi_{n+1} \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $, whence we readily deduce (2.9). Moreover, if $ p_u : \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1}$ is the orthogonal projection onto $ {\rm span}\{u\} $ we use the permutation formula (cf. [Reference Federer10, 1.4.2]) to compute

(2.11)\begin{align} & \langle \xi_1 \wedge \cdots \wedge \xi_{n+1}, \alpha(x,u) \wedge \varphi_{k-1}(x,u) \rangle\\ & = \sum_{j=1}^{n+1}(-1)^{j-1} \, \langle \xi_j, \alpha(x,u) \rangle \, \langle \xi_1 \wedge \cdots \wedge \xi_{j-1} \wedge \xi_{j+1} \wedge \cdots \wedge \xi_{n+1}, \varphi_{k-1}(x,u) \rangle \notag \\ & = (-1)^n \sum_{j=1}^{n+1} \sum_{\sigma \in \Sigma_{n,k-1}} \langle \pi_{\sigma(1)}(\xi_1) \wedge \cdots \wedge \pi_{\sigma(j-1)}(\xi_{j-1}) \wedge p_u(\pi_0(\xi_j))\notag \\ & \qquad \wedge \pi_{\sigma(j)}(\xi_{j+1}) \wedge \cdots \cdots \wedge \pi_{\sigma(n)}(\xi_{n+1}), E' \rangle \notag \end{align}

whenever $ \xi_1, \ldots, \xi_{n+1} \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ and $ k \geq 1 $. Suppose $ \tau_1, \ldots, \tau_n \in u^\perp $ is an orthonormal set and we define

\begin{equation*} v_i = (\tau_i, 0) \quad \text{for}\ i = 1, \ldots , n , \quad v_i = (0, \tau_{i-n}) \quad \text{for}\ i = n+1, \ldots, 2n , \quad v_{2n+1} = (u,0), \end{equation*}

which form an orthonormal basis of $ \mathbf{R}^{n+1} \times u^\perp $. Then we define

\begin{equation*} v_\lambda = v_{\lambda(1)} \wedge \cdots \wedge v_{\lambda(n+1)} \quad \text{whenever}\ \lambda \in \Lambda(2n+1, n+1) \end{equation*}

and, recalling that $ \{v_\lambda : \lambda \in \Lambda(2n+1, n+1) \} $ is a basis of $ \bigwedge_{n+1}(\mathbf{R}^{n+1} \times u^\perp) $ (cf. [Reference Federer10, 1.3.2]), we notice that (2.8) reduces to check

(2.12)\begin{equation} (n-k+1)\, \langle v_\lambda, \alpha(x,u) \wedge \varphi_{k-1}(x,u) \rangle = \langle v_\lambda, d\, \varphi_k(x,u) \rangle \quad \text{for}\ \lambda \in \Lambda(2n+1, n+1) . \end{equation}

Firstly, we notice that if $ \lambda \in \Lambda(2n+1, n+1) $ and $ 2n+1 \notin {\rm Im}(\lambda) $ then one can easily check from (2.10) and (2.11) that both sides of (2.12) must be equal to zero.

We fix now $ \lambda \in \Lambda(2n+1, n+1) $ such that $ \lambda (n+1) = 2n+1 $. Then $ \pi_1(v_{2n+1}) =0 $ and we employ (2.10) to compute

\begin{align*} &\langle v_\lambda, d\,\varphi_k(x,u) \rangle \\ & = (-1)^n \sum_{j=1}^{n} \sum_{\sigma \in \Sigma_{n,k}} \langle \pi_{\sigma(1)}(v_{\lambda(1)}) \wedge \cdots \wedge \pi_{\sigma(j-1)}(v_{\lambda(j-1)}) \wedge \pi_1(v_{\lambda(j)})\notag \\ & \qquad\wedge \pi_{\sigma(j)}(v_{\lambda(j+1)}) \wedge \cdots\cdots \wedge \pi_{\sigma(n-1)}(v_{\lambda(n)}) \wedge \pi_{\sigma(n)}(v_{2n+1}), E' \rangle \notag \\ & = (-1)^n \sum_{j \in \lambda^{-1}\{n+1, \cdots, 2n\}} \sum_{\substack{\sigma \in \Sigma_{n,k}\\ \sigma(n) =0}} \langle \pi_{\sigma(1)}(v_{\lambda(1)}) \wedge \cdots \wedge \pi_{\sigma(j-1)}(v_{\lambda(j-1)}) \wedge \tau_{\lambda(j)-n} \wedge \notag \\ & \qquad\wedge \pi_{\sigma(j)}(v_{\lambda(j+1)}) \wedge \cdots \wedge \pi_{\sigma(n-1)}(v_{\lambda(n)}) \wedge u, E' \rangle, \\ \end{align*}

while, since $ p_u(\pi_0(v_{\lambda(j)})) =0 $ for $ j = 1, \ldots, n $, we obtain from (2.11)

\begin{align*} \langle v_\lambda, \alpha(x,u) \wedge \varphi_{k-1}(x,u) \rangle = (-1)^n \sum_{\sigma \in \Sigma_{n,k-1}} \langle \pi_{\sigma(1)}(v_{\lambda(1)}) \wedge \cdots \wedge \pi_{\sigma(n)}(v_{\lambda(n)}) \wedge u, E' \rangle. \end{align*}

Therefore, if $ \mathcal{H}^0\big(\lambda^{-1}\{1, \ldots, n\}\big) \neq k-1 $ then

\begin{equation*} \langle v_\lambda, \alpha(x,u) \wedge \varphi_{k-1}(x,u) \rangle =0 = \langle v_\lambda, d\,\varphi_k(x,u) \rangle. \end{equation*}

Finally, if $ \mathcal{H}^0\big(\lambda^{-1}\{1, \ldots, n\}\big) = k-1 $ then

\begin{align*} &(n-k+1)\, \langle v_\lambda, \alpha(x,u) \wedge \varphi_{k-1}(x,u) \rangle \\ & \quad = (n-k+1)\,(-1)^n \, \langle \tau_{\lambda(1)} \wedge \cdots \wedge \tau_{\lambda(k-1)}\wedge \tau_{\lambda(k) -n} \wedge \cdots \wedge \tau_{\lambda(n) -n}\wedge u , E' \rangle \\ & \quad = \langle v_\lambda, d\,\varphi_k(x,u) \rangle. \end{align*}

We recall that a local variation $(F_t)_{t \in I} $ of $ \mathbf{R}^{n+1} $ is a smooth map $ F : I \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} $, where I is an open interval of R with $ 0 \in I $, such that $ F_0 = F(0, \cdot) $ is the identity of $ \mathbf{R}^{n+1} $ and $ F_t = F(t, \cdot) : \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} $ is a diffeomorphism for every $ t \in I $. For such local variation, we define the initial velocity vector field V by

\begin{equation*} V(x) = \lim_{t \to 0} \frac{F_t(x) - x}{t} \quad \text{for}\ x \in \mathbf{R}^{n+1} . \end{equation*}

Moreover, if $ F : U \rightarrow V $ is a C 2-diffeomorphism between open subsets of $ \mathbf{R}^{n+1} $, we define the C 1-diffeomorphism $ \Psi_F :U \times \mathbf{S}^n \rightarrow V \times \mathbf{S}^n $ by

(2.13)\begin{equation} \Psi_F(x,u) = \bigg(F(x), \frac{(D F(x)^{-1})^\ast(u)}{| (D F(x)^{-1})^\ast(u) |}\bigg) \quad \text{for}\ (x,u) \in U \times \mathbf{S}^n . \end{equation}

We define $ \mathbf{R}^{n+1}_0 = \mathbf{R}^{n+1} \setminus \{0\} $. For a local variation $ (F_t)_{t \in I} $ (where I is an open interval of R with $ 0 \in I $) we define (cf. (2.13)) the smooth map $ h : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1}_0 \times I \rightarrow \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ by

\begin{equation*} h(x,u,t) = \Psi_{F_t}(x,u) \qquad \text{for}\ (x,u,t) \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1}_0 \times I \end{equation*}

and we notice that $ h(x,u,0) = (x,u) $ for $ (x,u)\in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1}_0 $. Moreover we define

\begin{equation*} p : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \times \mathbf{R} \rightarrow \mathbf{R}^{n+1} \times \mathbf{R}^{n+1}, \qquad p(x,u,t) = (x,u), \end{equation*}
\begin{equation*} q : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \times \mathbf{R} \rightarrow \mathbf{R}, \qquad q(x,u,t) = t, \end{equation*}
\begin{equation*} P : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \times \mathbf{R}, \qquad P(x,u) = (x,u,0). \end{equation*}

Lemma 2.8. (cf. [Reference Fu16])

Suppose $ {{T}} $ is a Legendrian cycle of $ \mathbf{R}^{n+1} $ with $ {\rm spt} (T) $ compact, $ (F_t)_{t \in I} $ is a local variation of $ \mathbf{R}^{n+1} $ with initial velocity vector field $ {{V}} $ and $ \theta_V : \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R} $ is given by $ \theta_V(x,u) = V(x) \bullet u $ for $(x,u) \in \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $.

Then (see (2.13))

\begin{equation*} \frac{d}{dt}\big[(\Psi_{F_t})_{\#}T \big](\varphi_{i}) \Big|_{t=0} = (n+1-i)T(\theta_V \wedge \varphi_{i-1}) \quad \text{for}\ i = 1, \ldots , n \end{equation*}

and

\begin{equation*} \frac{d}{dt}\big[(\Psi_{F_t})_{\#}T \big](\varphi_{0}) \Big|_{t=0} =0. \end{equation*}

Proof. Firstly, a simple direct computation leads to

(2.14)\begin{equation} h^\# \alpha \circ P = \big(p^\# \alpha + \theta_V \, dq\big) \circ P \end{equation}

and

(2.15)\begin{equation} \big(h^\# \varphi_k \wedge \, dq\big) \circ P = \big(p^\# \varphi_k \wedge \, dq\big) \circ P. \end{equation}

Suppose now $ M \subseteq \mathbf{R}^{n+1} \times \mathbf{S}^n $ is a countably $ \mathcal{H}^n $-rectifiable set and η is a $ \mathcal{H}^n \operatorname{\llcorner} M $-measurable simple n-vectorfield such that $ | \eta(x,u) | $ is a positive integer for $ \mathcal{H}^n $ a.e. $(x,u) \in M $,

\begin{equation*} T (\phi) = \int_M \langle \eta(x,u), \phi(x,u) \rangle \, d\mathcal{H}^n(x,u) \quad \text{for each}\ \phi \in \mathcal{D}^n(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}) , \end{equation*}

and $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} M, (x,u)) $ is associated with $ \eta(x,u) $ for $ \mathcal{H}^n $ a.e. $(x,u) \in M $. For t > 0 we define $\unicode{x27E6} 0,t \unicode{x27E7} \in \mathcal{D}_1(\mathbf{R}) $ by the formula

\begin{equation*} \unicode{x27E6} 0,t \unicode{x27E7}(\beta) = \int_0^1 \langle t, \beta(st) \rangle \, ds = \int_0^t \langle 1, \beta(s) \rangle \, ds \quad \text{for}\ \beta \in \mathcal{E}^1(\mathbf{R}). \end{equation*}

Denoting by $ T \times \unicode{x27E6} 0,t \unicode{x27E7} \in \mathcal{D}_{n+1}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \times \mathbf{R}) $ the Cartesian product of T and $ \unicode{x27E6} 0,t \unicode{x27E7} $, we employ [Reference Federer10, 4.1.8] to compute

\begin{equation*} \big( T \times \unicode{x27E6} 0,t \unicode{x27E7}\big)(\phi) = \int_M \int_0^t \big\langle \zeta(x,u,s), \phi(x,u,s) \big\rangle\, ds\, d\mathcal{H}^n(x,u) \end{equation*}

whenever $ \phi \in \mathcal{E}^{n+1}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1} \times \mathbf{R}) $, where

\begin{equation*} \zeta(x,u,s) =\big({\textstyle \bigwedge_n} P\big)(\eta(x,u)) \wedge w_{2n+3} \quad \text{for } \mathcal{H}^n\ \text{a.e.}\ (x,u) \in M\ \text{and for}\ s \in (0,t) .\end{equation*}

Employing [Reference Federer10, 4.1.8, 4.1.9] and taking into account that $ \partial T = 0 $ we derive the homotopy formula

\begin{equation*} \big(\Psi_{F_t}\big)_\# T - T = (-1)^n\, \partial \big[h_\#(T \times \unicode{x27E6} 0,t \unicode{x27E7})\big]. \end{equation*}

Since $ {\rm spt} \big( h_\#\big(T \times \unicode{x27E6} 0,t \unicode{x27E7} \big)\big) \subseteq \mathbf{R}^{n+1} \times \mathbf{S}^n $ we use lemma 2.7 to compute

\begin{align*} & \big[ \big(\Psi_{F_t}\big)_\# T - T \big](\varphi_k) = (-1)^n\,(n-k+1)\, h_\#(T \times \unicode{x27E6} 0,t \unicode{x27E7})(\alpha \wedge \varphi_{k-1}) \\ & \qquad = (-1)^n\, (n-k+1)\, \int_M \int_0^t \big\langle \zeta(x,u,s), h^\# \alpha \wedge h^\#\varphi_{k-1}(x,u,s) \big\rangle\, ds\, d\mathcal{H}^n(x,u), \end{align*}

whence we infer that

\begin{align*} &\lim_{t \to 0} \frac{\big[ \big(\Psi_{F_t}\big)_\# T - T \big](\varphi_k)}{t} \\ & \qquad = (-1)^n\,(n-k+1)\, \int_M \big\langle \zeta(x,u,0), h^\# \alpha \wedge h^\#\varphi_{k-1}(x,u,0) \big\rangle\, d\mathcal{H}^n(x,u). \end{align*}

Using (2.14) and (2.15) we deduce that

\begin{align*} & \big\langle \zeta(x,u,0), h^\# \alpha \wedge h^\#\varphi_{k-1}(x,u,0) \big\rangle \\ & \quad = \langle \zeta(x,u,0), p^\# \alpha \wedge h^\#\varphi_{k-1}(x,u,0) \rangle + \langle \zeta(x,u,0), \theta_V(x,u)\, dq \wedge p^\#\varphi_{k-1}(x,u,0) \rangle \end{align*}

for $ \mathcal{H}^n $ a.e. $ (x,u) \in M $. Moreover, noting that $ p(w_{2n+3}) =0 $ and $ \langle \tau, \alpha(x,u) \rangle =0 $ whenever $ \tau \in \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} M, (x,u)) $ for $ \mathcal{H}^n $ a.e. $ (x,u) \in M $ by [Reference Rataj and Zähle30, Theorem 9.2], we obtain that

\begin{equation*} \langle \zeta(x,u,0), p^\# \alpha \wedge h^\#\varphi_{k-1}(x,u,0) \rangle =0 \qquad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (x,u) \in M \end{equation*}

and employing the shuffle formula we compute

\begin{equation*} \langle \zeta(x,u,0), \theta_V(x,u)\, dq \wedge p^\#\varphi_{k-1}(x,u,0) \rangle = (-1)^n\,\theta_V(x,u)\, \langle \eta(x,u), \varphi_{k-1}(x,u) \rangle \end{equation*}

for $ \mathcal{H}^n $ a.e. $(x,u) \in M $. Moreover, applying lemma 2.7, we obtain

\begin{equation*}\frac{d}{dt}\big[(\Psi_{F_t})_{\#}T \big](\varphi_{0}) \Big|_{t=0} =(-1)^n\,\lim_{t\to0}\frac{[h_\#(T \times \unicode{x27E6} 0,t \unicode{x27E7})\big](d\varphi_0)}{t}=0\,.\end{equation*}

2.4. The proximal unit normal bundle

The following notion plays a key role in this paper.

Definition 2.9. (cf. [Reference Rockafellar and Wets34, p. 212])

If $\varnothing \neq C \subseteq \mathbf{R}^{n+1} $ we define the proximal unit normal bundle of $ {{C}} $ as

\begin{equation*} \operatorname{nor}(C) = \{(x,\nu)\in \overline{C} \times \mathbf{S}^{n}: {\rm dist}(x+s\nu, C) = s \; \text{for some}\ s \gt 0 \}. \end{equation*}

Remark 2.10. Notice that $ \operatorname{nor}(C) = \operatorname{nor}(\overline{C}) $. We recall that $ \operatorname{nor}(C) $ is a Borel set and it is always countably $ \mathcal{H}^n $-rectifiable; see [Reference Santilli40, Remark 4.3].Footnote 1 However, $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(C) $ might not be a Radon measure, even when C is the closure of a smooth submanifold with bounded mean curvature; cf. lemma A.3 and remark A.4.

The following lemma is an extension of well-known results for sets of positive reach (cf. [Reference Rataj and Zähle30, Lemmas 4.23 and 4.24]).

Lemma 2.11. Suppose $ C \subseteq \mathbf{R}^{n+1} $. For $ \mathcal{H}^n $ a.e. $ (x,u) \in \operatorname{nor}(C) $ there exist numbers

\begin{equation*}-\infty \lt \kappa_{1}(x,u) \leq \ldots \leq \kappa_{n}(x,u)\leq \infty \end{equation*}

and vectors $ \tau_1(x,u), \ldots , \tau_n(x,u)$ such that $ \{\tau_1(x,u), \ldots , \tau_n(x,u), u\} $ is an orthonormal basis of $\mathbf{R}^{n+1} $ and the vectors

\begin{equation*} \zeta_i(x,u) = \bigg(\frac{1}{\sqrt{1 + \kappa_i(x,u)^2}} \tau_i(x,u), \frac{\kappa_i(x,u)}{\sqrt{1 + \kappa_i(x,u)^2}}\tau_i(x,u) \bigg), \quad i = 1, \ldots, n, \end{equation*}

form an orthonormal basis of $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} Q, (x,u)) $ for every $ \mathcal{H}^n $-measurable set $ Q \subseteq\operatorname{nor}(C) $ with $ \mathcal{H}^n(Q) \lt \infty $ and for $ \mathcal{H}^n $ a.e. $(x,u) \in Q $ (We set $ \frac{1}{\infty} = 0 $ and $ \frac{\infty}{\infty} = 1 $). In particular,

\begin{equation*} \operatorname{nor}(C)\ \text{is a Legendrian rectifiable set}. \end{equation*}

Moreover, the maps $ \kappa_{1}, \ldots , \kappa_n $ can be chosen to be $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(C) $-measurable and they are $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(C) $-almost uniquely determined.

Proof. The existence part of the statement and the measurability property are discussed in [Reference Hug and Santilli14, Section 3] (see in particular [Reference Hug and Santilli14, Remark 3.7]). Uniqueness can be proved as in [Reference Rataj and Zähle30, Lemma 4.24].

Definition 2.12. If $ C \subseteq \mathbf{R}^{n+1} $, we denote by $ \kappa_{C,1}, \ldots , \kappa_{C,n} $ the $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(C) $ measurable maps given by lemma 2.11.

The following Heintze–Karcher-type inequality for arbitrary closed sets is proved in [Reference Hug and Santilli14].

Theorem 2.13 (cf. [Reference Hug and Santilli14, Theorem 3.20])

Let $ C \subseteq \mathbf{R}^{n+1} $ be a bounded closed set with non empty interior. Let $ K = \mathbf{R}^{n+1} \setminus {\rm interior}(C) $ and assume that

\begin{equation*} \sum_{i=1}^n \kappa_{K,i}(x,u) \leq 0 \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (x,u) \in \operatorname{nor}(K). \end{equation*}

Then

\begin{equation*} (n+1)\mathcal{L}^{n+1}({\rm interior}(C)) \leq \int_{\operatorname{nor}(K)}J_n^{\operatorname{nor}(K)}\pi_0(x,u)\,\frac{n}{|\sum_{i=1}^n \kappa_{K,i}(x,u)|}\, d\mathcal{H}^n(x,u). \end{equation*}

Moreover, if the equality holds and there exists $ q \lt \infty $ such that $ |\sum_{i=1}^n \kappa_{K,i}(x,u)| \leq q $ for $ \mathcal{H}^n $ a.e. $ (x,u) \in \operatorname{nor}(K) $, then $ \text{interior}(C)$ is a finite union of disjointed (possibly mutually tangent) open balls.

2.5. $W^{2,n}$-functions

Suppose $ U \subseteq \mathbf{R}^n $ is open. We denote by $ W^{k,p}(U) $ (resp. $ W^{k,p}_{\rm loc}(U) $) the usual Sobolev space of k-times weakly differentiable functions, whose distributional derivatives up to order k belong to the Lebesgue space $ L^p(U) $ (resp. $ L^p_{\rm loc}(U) $); cf. [Reference Gilbarg and Trudinger11, Chapter 7]. We denote by $ \boldsymbol{\nabla}f $ and $ \mathbf{D}^i f $ the distributional gradient and the distributional i-th differential of a Sobolev function f.

We now state two results on the fine properties of $ W^{2,n} $-functions, which play an important role in this paper. We start with some definitions.

Definition 2.14. Given $ U \subseteq \mathbf{R}^n $ open set and $ f : U \rightarrow \mathbf{R} $ continuous function, we define $ \Gamma^+(f, U) $ as the set of $ x \in U $ for which there exists $ p \in \mathbf{R}^n $ such that

\begin{equation*} f(y) \leq f(x) + p \bullet (y-x) \quad \forall y \in U. \end{equation*}

Definition 2.15. Suppose $ f : U \rightarrow \mathbf{R} $ is a continuous function. We define $ \mathcal{S}^\ast(f)$, respectively $ \mathcal{S}_\ast(f)$, as the set of $ x \in U $, where there exists a polynomial function $ {{P}} $ of degree at most 2 such that $ P(x) = f(x) $ and

\begin{equation*} \limsup_{y \to x} \frac{f(y) - P(y)}{|y-x|^2} \lt \infty, \qquad \text{respectively} \quad \liminf_{y \to x} \frac{f(y) - P(y)}{|y-x|^2} \gt - \infty. \end{equation*}

Moreover, we set $ \mathcal{S}(f) $ to be the set of $ x \in U $, where there exists a polynomial function P of degree at most 2 such that $ P(x) = f(x) $ and

\begin{equation*} \lim_{y \to x} \frac{f(y) - P(y)}{|y-x|^2} =0. \end{equation*}

Lemma 2.16. If $ f \in C(U) \cap W^{2,n}(U) $, then $ \mathcal{L}^n\big(U \setminus \mathcal{S}(f)\big) =0 $.

Proof. This is a special case of [Reference Caffarelli, Crandall, Kocan and Swiech5, Proposition 2.2], which is attributed to Calderon and Zygmund. This result can also be proved by a simple adaptation of the method of [Reference Trudinger27] (cf. [Reference Valentini44]). An interesting generalization is given in [Reference Fu17].

The following oscillation estimate plays a key role in lemma 3.5 and was proved by Ulrich Menne, see [Reference Menne24, Appendix B].

Lemma 2.17. Let $ a \in \mathbf{R}^n $, r > 0, $ f \in C(B_r(a)) \cap W^{2,n}(B_r(a)) $ and $ g \in C^2(B_r(a)) $ such that

\begin{equation*} g(a) = f(a), \qquad f(x) \geq g(x) \quad \text{for every}\ x \in B_r(a) . \end{equation*}

Then there exists a constant c(n), depending only on n, such that

(2.16)\begin{equation} \| \mathbf{D} f - D g(a) \|_{L^n(B_r(a))} \leq c(n) r \Big( \| \mathbf{D}^2 f \|_{L^n(B_r(a))} + r \| D^2 g \|_{L^\infty(B_r(a))}\Big), \end{equation}
(2.17)\begin{equation} \!\!\!\!\!\!\!\!\!\!\!\! \| f - L_a \|_{L^\infty(B_r(a))} \leq c(n) r \Big( \| \mathbf{D}^2 f \|_{L^n(B_r(a))} + r \| D^2 g \|_{L^\infty(B_r(a))}\Big), \end{equation}

where $ L_a(x) = f(a) + D g(a)(x-a) $ for $ x \in \mathbf{R}^n $. In particular, f is pointwise differentiable at a with $ D f(a) = D g(a) $.

Proof. See [Reference Menne24, Lemma B.3]. In particular, (2.16) and (2.17) follow from the estimate of [Reference Menne24, Lemma B.3], while the pointwise differentiability of f at a directly follows from (2.17).

Remark 2.18. It follows from lemma 2.17 that if $ a \in \mathcal{S}^\ast(f) \cup \mathcal{S}_\ast(f) $, then a is a Lebesgue point of $ \mathbf{D} f $, the map f is pointwise differentiable at a, and

\begin{equation*} D f(a) = \mathbf{D} f(a). \end{equation*}

We conclude with a Lusin-type result for $ W^{1,1}$-functions, which can be easily deduced from well-known results of Calderon–Zygmund and Federer. We provide a detailed proof since we were unable to find this precise statement in classical references.

Lemma 2.19. Suppose U is an open subset of Rn and $ f \in W^{1,1}_{\rm loc}(U, \mathbf{R}^k)$. Then f is $ \mathcal{L}^n \operatorname{\llcorner} U $-approximately differentiable at $ \mathcal{L}^n $ a.e. $ x \in U $ with $ \operatorname{ap} D f(x) = \mathbf{D} f(x) $. In particular, there exist countably many $ \mathcal{L}^n $-measurable subsets Ai of U such that $ \mathcal{L}^n\big(U \setminus \bigcup_{i=1}^\infty A_i\big) =0 $ and $ {\rm Lip} (f|A_i) \lt \infty $ for every $ i \geq 1 $.

Proof. By [Reference Calderón and Zygmund6, Theorem 12] (or [Reference Ziemer46, Theorem 3.4.2]), we have that

(2.18)\begin{equation} \lim_{r \to 0} r^{-n-1} \int_{B(x,r)} | f(y) - f(x) - \mathbf{D} f(x)(y-x)|\, d\mathcal{L}^n(y) =0 \end{equation}

for $ \mathcal{L}^n $ a.e. $ x \in U $. Fix now $ x \in U $ such that (2.18) holds, define the affine function $ L_x(y) = f(x) + \mathbf{D} f(x)(y-x) $ for $ y \in \mathbf{R}^n $ and notice that

\begin{equation*} \frac{\epsilon \mathcal{L}^n(B(x,r) \cap \{y : |f(y)- L_x(y)| \geq \epsilon \, r\})}{r^n} \leq r^{-n-1} \int_{B(x,r)} |f(y)- L_x(y)|\, d\mathcal{L}^ny \end{equation*}

for every ϵ > 0. Henceforth, by (2.18) and [Reference Santilli39, Lemma 2.7],

\begin{equation*} \Theta^n\big(\mathcal{L}^n \operatorname{\llcorner} \{y : | f(y)- L_x(y)| \geq 2 \epsilon | y-x|\}, x\big) =0 \quad \text{for every}\ \epsilon \gt 0 , \end{equation*}

whence we conclude that f is $ \mathcal{L}^n \operatorname{\llcorner} U $-approximately differentiable at x with $ \operatorname{ap} D f(x) = \mathbf{D} f(x) $ applying [Reference Federer10, p. 253] with ϕ and m replaced by $ \mathcal{L}^n \operatorname{\llcorner} U $ and n. Now we can use [Reference Federer10, 3.1.8] to infer the existence of the countable cover Ai.

3. Legendrian cycles over $W^{2,n} $-graphs

The main result of this section (theorem 3.9) proves that the Legendrian cycle associated with the subgraph of a $W^{2,n}$-function is carried over its proximal unit normal bundle. This is the key result to extend the Alexandrov sphere theorem to $ W^{2,n} $-domains.

Definition 3.1. Suppose $ \psi : \mathbf{R}^n \rightarrow \mathbf{R}^{n+1} $ is defined as

\begin{equation*} \psi(y) = \frac{(-y,1)}{\sqrt{1 + |y|^2}}. \end{equation*}

If $ f \in W^{2,n}(U) \cap C(U) $, we define

\begin{equation*} \Phi_f(x) = (x,f(x), \psi(\nabla f(x))) \in U \times \mathbf{R} \times \mathbf{S}^n \quad \text{for every}\ x \in {\rm Diff}(f) . \end{equation*}

Remark 3.2. Let $ \mathbf{S}^n_+ = \{(z, t) \in \mathbf{R}^n \times \mathbf{R} : |z|^2 + t^2 = 1, \; t \gt 0\} $. Notice that ψ is a diffeomorphism onto $ \mathbf{S}^n_+ $ with inverse given by

\begin{equation*} \varphi : \mathbf{S}^n_+ \rightarrow \mathbf{R}^n, \quad \varphi(z,t) = - \frac{z}{t}, \end{equation*}

and $ \| D \psi (y) \| \leq 2 $ for $ y \in \mathbf{R}^n $.

Remark 3.3. We recall that $ \boldsymbol{\nabla} f $ is $ \mathcal{L}^n \operatorname{\llcorner} U $-approximately differentiable at $ \mathcal{L}^n $ a.e. $ a \in U $ by lemma 2.19. Moreover, $ \nabla f(a) = \boldsymbol{\nabla} f(a) $ for $ \mathcal{L}^n $ a.e. $ a \in U $ by remark 2.18. If $ a \in {\rm Diff}(f) $ and $ \nabla f $ is $ \mathcal{L}^n \llcorner U $-approximately differentiable at a, then $ \Phi_f $ is $ \mathcal{L}^n \operatorname{\llcorner} U $-approximately differentiable at a and

\begin{equation*} \operatorname{ap} D \Phi_f(a)(\tau) = \big(\tau, D f(a)(\tau), \langle \operatorname{ap} D(\nabla f)(a)(\tau), D \psi(\nabla f(a))\rangle \big) \end{equation*}

for every $ \tau \in \mathbf{R}^n $. In particular $ \operatorname{ap} D \Phi_f(a) $ is injective for $ \mathcal{L}^n $ a.e. $ a \in U $ and, recalling (3.2) and noting that $ \mathbf{D}(\nabla f) = \operatorname{ap} D (\nabla f) $ by lemma 2.19, we infer that

\begin{align*} \int_U \| \operatorname{ap} D \Phi_f \|^n \, d\mathcal{L}^n \leq c(n) \bigg(\mathcal{L}^n(U) + \int_U \| D f \|^n \, d\mathcal{L}^n + \int_U \| \mathbf{D}^2 f \|^n \, d\mathcal{L}^n \bigg). \end{align*}

It follows that $ \Phi_f $ is a $W^{1,n}$-map over U.

Remark 3.4. The following basic fact of measure theory is used in the proof of lemma 3.5. Suppose µ is a measure over a set X, C is a positive constant, and $ \{E_j: j \in S\} $ is a countable family of µ-measurable sets, such that $ \mathcal{H}^0(\{j \in S : E_j \cap E_i \neq \varnothing\}) \leq C $ for every $ i \in S $. Then

\begin{equation*} \sum_{i \in S} \mu(E_i) \leq C \mu\bigg( \bigcup_{i \in S} E_i\bigg). \end{equation*}

The following result is proved using a Rado–Reichelderfer-type argument; cf. [Reference Malý21] and references therein.

Lemma 3.5. If $f\in C(U)\cap W^{2,n}_{\rm loc}(U)$ then $ \mathcal{H}^n(\Phi_f(Z)) =0 $ for every $ Z \subseteq \mathcal{S}^\ast(f) $ such that $ \mathcal{L}^n(Z) =0 $.

Proof. Given µ > 0 and $ V \subseteq U $, we define $ X(V, \mu) $ as the set of $ x \in V $ for which there exists a polynomial function Q of degree at most 2 such that $ f(y) \leq Q(y) $ for every $ y \in V $, $ f(x) = Q(x) $, $ \| D Q(x) \| \leq \mu $ and $ \| D^2 Q \| \leq \mu $. If $ D \subseteq U $ is a countable dense subset of U and $ I(c) = \{s \in \mathbf{Q} : B_s(c) \subseteq U\} $ for every $ c\in D $, then we notice that

\begin{equation*} \mathcal{S}^\ast(f) \subseteq \bigcup_{c \in D} \bigcup_{s \in I(c)}\bigcup_{i =1}^\infty X(B_s(c), i). \end{equation*}

Henceforth, it is sufficient to show that $ \mathcal{H}^n(\Phi_f(Z)) =0 $ whenever $ Z \subseteq X(U,\mu) $ with $ \mathcal{L}^n(Z) =0 $, for some µ > 0. Notice that f is pointwise differentiable at each point of the set $ X(V,\mu) $, by lemma 2.17.

Now we prove the following estimates: given $ c \in U $ and $ 0 \lt r \lt 1 $ such that $ \overline{B_{3r}(c)} \subseteq U $, then

(3.1)\begin{equation} \| D f(a) - D f(b) \| \leq c(n)\big( \|\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + \mu r\big) \end{equation}
(3.2)\begin{equation} |f(a) - f(b) | \leq c(n) r \big( \|\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + \mu \big) \end{equation}

for every $ a, b \in X(U,\mu) \cap B_{r}(c) $. We fix $ a, b \in X(U,\mu) \cap B_r(c) $, ab, and we define

\begin{equation*} s = \frac{|a-b|}{2} \quad \text{and} \quad d = \frac{a+b}{2}. \end{equation*}

We notice that $ s \leq r $,

\begin{equation*} B_s(d) \subseteq B_{2s}(a) \cap B_{2s}(b) \quad \text{and} \quad B_{2s}(a) \cup B_{2s}(b) \subseteq B_{3r}(c); \end{equation*}

consequently it follows from (2.16) of lemma 2.17 that

\begin{align*} \| \mathbf{D} f -D f(e) \|_{L^n(B_s(d))} & \leq \| \mathbf{D} f - D f(e) \|_{L^n(B_{2s}(e))}\\ & \leq c(n) s \big( \|\mathbf{D}^2 f\|_{L^n(B_{2s}(e))} + \mu s \big)\\ & \leq c(n) s \big( |\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + \mu r\big), \end{align*}

for $ e \in \{a,b\} $, whence we infer

\begin{align*} \boldsymbol{\alpha}(n)^{1/n}s \| D f(a) - D f(b) \| & \leq \| \mathbf{D} f -D f(a) \|_{L^n(B_s(d))} + \| \mathbf{D} f - D f(b) |_{L^n(B_s(d))}\\ & \leq c(n) s \big( \|\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + \mu r\big) \end{align*}

and (3.1) is proved. Moreover, combining (2.17) of lemma 2.17 with (3.1)

\begin{align*} & |f(a) - f(b) | \\ & \qquad \leq \| f - L_a\|_{L^\infty(B_s(d))} + \| f - L_b \|_{L^\infty(B_s(d))} + s \| D f(a) \| + s \| D f(b) \| \\ & \qquad \leq \| f - L_a\|_{L^\infty(B_{2s}(a))} + \| f - L_b \|_{L^\infty(B_{2s}(b))} + 2\mu r \\ & \qquad \leq c(n) r \big( \|\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + \mu \big). \end{align*}

We consider the function $ \overline{f} \times \nabla f $ mapping $ x \in {\rm Diff}(f)$ into $ (\overline{f}(x), \nabla f(x)) \in \mathbf{R}^{2n+1} $. Then it follows from (3.1) and (3.2) that

(3.3)\begin{equation} {\rm diam}\,\big[(\overline{f} \times \nabla f)\big(B_r(c) \cap X(U,\mu)\big)\big] \leq c(n,\mu) \big( \|\mathbf{D}^2 f\|_{L^n(B_{3r}(c))} + r\big). \end{equation}

Let $ Z \subseteq X(U,\mu) $ bounded and $ \mathcal{L}^n(Z) =0 $. Given ϵ > 0, we choose an open set $ V \subseteq U $ such that $ Z \subseteq V $, and

(3.4)\begin{equation} \mathcal{L}^n(V) \leq \epsilon, \quad \| \mathbf{D}^2 f \|_{L^n(V)}^n \leq \epsilon. \end{equation}

We define $ R : Z \rightarrow \mathbf{R} $ and $ \rho : Z \rightarrow \mathbf{R} $ as

\begin{equation*} R(x) = \inf\bigg\{1, \frac{{\rm dist}(x, \mathbf{R}^n \setminus V)}{4}\bigg\}, \quad \text{for}\ x \in Z , \end{equation*}
\begin{equation*} \rho(x) = {\rm diam}\, ((\overline{f} \times \nabla f)(B_{R(x)}(x) \cap X(U,\mu))), \quad \text{for}\ x \in Z . \end{equation*}

We notice that R is a Lipschitzian function with $ {\rm Lip}(R) \leq \frac{1}{4} $ and, noting that $ B_{3R(x)}(x) \subseteq V $ for every $ x \in Z $ and combining (3.3) and (3.4), we obtain

(3.5)\begin{equation} \rho(x) \leq c(n,\mu) \big( \|\mathbf{D}^2 f\|_{L^n(B_{3R(x)}(x))} + R(x)\big) \leq c(n,\mu) \epsilon^{1/n}, \end{equation}

for $ x \in Z $. We prove now the following claim: there exists $ C \subseteq Z $ countable such that

\begin{equation*} \{B_{R(y)/5}(y): y \in C\}\ \text{is disjointed}, \end{equation*}
\begin{equation*} Z \subseteq \bigcup_{y \in C}B_{R(y)}(y), \end{equation*}

and

\begin{equation*} \mathcal{H}^0\big(\{y \in C: B_{3R(y)}(y) \cap B_{3R(x)}(x) \neq \varnothing\}\big) \leq c(n), \quad \text{for every}\ x \in Z . \end{equation*}

Applying Besicovitch covering theorem [Reference Ambrosio, Fusco and Pallara3, Theorem 2.17] (see also the remark at the beginning of p. 52), there exists a positive constant $ \xi(n) $ depending only on n, and there exist $ Z_1, \ldots , Z_{\xi(n)} \subseteq Z $ such that

\begin{equation*} Z \subseteq \bigcup_{i=1}^{\xi(n)} \bigcup_{x \in Z_i}B_{R(x)/5}(x), \end{equation*}

and $ \{B_{R(x)/5}(x) : x \in Z_i\} $ is disjointed for every $ i = 1, \ldots , \xi(n) $. We now apply [Reference Federer10, Lemma 3.1.12] with $ S = Z_i $, U = Z, $ h = \frac{R}{5}$, $ \lambda = \frac{1}{20} $ and $ \alpha = \beta = 15 $, to infer that

\begin{equation*} \mathcal{H}^0 \big( \{y \in Z_i : B_{3R(y)}(y) \cap B_{3R(x)}(x) \neq \varnothing\}\big) \leq c(n), \quad \text{for every}\ i = 1, \ldots , \xi(n) . \end{equation*}

We define $ Z' = \bigcup_{i=1}^{\xi(n)} Z_i $, and we notice that $ Z \subseteq \bigcup_{x \in Z'} B_{R(x)/5}(x) $ and

\begin{equation*} \mathcal{H}^0\big(\{y \in Z' : B_{3R(y)}(y) \cap B_{3R(x)}(x) \neq \varnothing\}\big) \leq \xi(n)c(n), \quad \text{for every}\ x \in Z . \end{equation*}

Now we apply Vitali covering theorem to find a countable set $ C \subseteq Z' $ such that $ \{B_{R(x)/5}(x): x \in C\} $ is disjointed and

\begin{equation*} Z \subseteq \bigcup_{x \in C}B_{R(x)}(x), \end{equation*}

which proves the claim.

Denoting with ϕδ the size δ approximating measure of the n-dimensional Hausdorff measure $ \mathcal{H}^n $ of $ \mathbf{R}^{2n+1} $ (cf. [Reference Federer10, 2.10.1, 2.10.2]), and combining (3.5) with the claim above and with remark 3.4, we have

\begin{align*} &\phi_{c(n, \mu)\epsilon^{1/n}} ((\overline{f} \times \nabla f)(Z)) \leq c(n) \sum_{y \in C} \rho(y)^n\\ & \qquad \leq c(n,\mu) \sum_{y \in C} \Big( \|\mathbf{D}^2 f \|_{L^n(B_{3R(y)}(y))} + R(y)\Big)^n\\ & \qquad \leq c(n,\mu) \sum_{y \in C} R(y)^n + c(n,\mu) \sum_{y \in C}\int_{B_{3R(y)}(y)}\|\mathbf{D}^2 f \|^n\, d\mathcal{L}^n \\ &\qquad \leq c(n, \mu)\mathcal{L}^n(V) + c(n, \mu) \int_V \| \mathbf{D}^2 f \|^n\, d\mathcal{L}^n \\ & \qquad \leq c(n,\mu) \epsilon. \end{align*}

Henceforth, letting ϵ → 0 we deduce that $ \mathcal{H}^n((\overline{f} \times \nabla f)(Z)) =0 $. Since $ \Phi_f = (\bf{1}_{\mathbf{R}^{n+1}} \times \psi) \circ (\overline{f} \times \nabla f) $ (see remark 3.2), we conclude that $ \mathcal{H}^n(\Phi_f(Z)) =0 $.

Lemma 3.6. Suppose $ U \subseteq \mathbf{R}^n $ is open, $ \gamma \gt \frac{1}{2} $, $ f \in C^{0, \gamma}(U) $, $ x \in U $, $ \nu \in \mathbf{S}^n \subseteq \mathbf{R}^n \times \mathbf{R} $ such that $ B^{n+1}(\overline{f}(x)+s\nu, s) \cap \overline{f}(U) = \varnothing $ for some s > 0.

Then $ \nu \notin \mathbf{R}^n \times \{0\} $. In particular, this is always true for $ f \in W^{2,n}_{\rm loc}(U) \cap C(U) $.

Proof. We prove the assertion by contradiction. Suppose $ 0 \in U $ and $ f(0) =0 $; hence there exists $ c \in U \setminus \{0\} $ such that

\begin{equation*} B^{n+1}(c,|c|) \cap G = \varnothing \quad \text{and} \quad K : = \overline{B^{n+1}(c,|c|) \cap (\mathbf{R}^n \times \{0\})} \subseteq U. \end{equation*}

Suppose L > 0 such that $ | f(x) - f(y) | \leq L |x-y|^\gamma $ for every $ x, y \in K $, and define

\begin{equation*} h_{\pm}(x) = \pm \sqrt{|c|^2 -|x-c|^2} = \pm \sqrt{2 c \bullet x - | x |^2} \end{equation*}

for $ x \in K $. Henceforth, either $ h_+(x) \leq f(x) $ for every $ x \in K $, or $ f(x) \leq h_-(x) $ for every $ x \in K $. In both cases, replacing x with $ t c $ and $ 0 \lt t \lt 1 $, one obtains

\begin{equation*} t^{1-2\gamma}(2-t)\leq L^2 |c|^{2\gamma-2} \end{equation*}

for $ 0 \lt t \lt 1 $. This is clearly impossible, since $ 1-2\gamma \lt 0$.

Definition 3.7. If $ U \subseteq \mathbf{R}^n $ is an open set and $ f : U \rightarrow \mathbf{R} $ is a function, we define

\begin{equation*} E_f = \{(x,u) \in U \times \mathbf{R} : u \leq f(x)\} \end{equation*}

and

\begin{equation*} N_f = \operatorname{nor}(E_f) \cap (U \times \mathbf{R} \times \mathbf{R}^{n+1}). \end{equation*}

Lemma 3.8. If U is a bounded open set and $ f \in W^{2,n}(U) \cap C(U) $ then

(3.6)\begin{equation} N_f \cap (A \times \mathbf{R} \times \mathbf{R}^{n+1}) = \Phi_f\big[ A \cap \mathcal{S}^\ast(f) \big] \end{equation}

for every $ A \subseteq U $, and

(3.7)\begin{equation} \int_{N_f} \beta\, d\mathcal{H}^n = \int_U \beta(\Phi_f(x))\, \operatorname{ap} J_n\Phi_f(x)\, d\mathcal{L}^n(x), \end{equation}

whenever $ \beta : U \times \mathbf{R} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R} $ is a $ \mathcal{H}^n $-measurable non-negative function. In particular, $ \mathcal{H}^n(N_f) \lt \infty $ and

(3.8)\begin{equation} \operatorname{ap} D \Phi_f(x)[\mathbf{R}^n] = \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, \Phi_f(x)) \end{equation}

for $ \mathcal{L}^n $ a.e. $ x \in \mathcal{S}^\ast(f) $.

Proof. Suppose $(z, \nu) \in N_f$, where $ z = (x, f(x)) $ with $ x \in A $, and s > 0 such that $ B^{n+1}(z+s\nu, s) \cap E_f= \varnothing $. Since $ \nu \notin \mathbf{R}^n \times \{0\} $ by lemma 3.6, we can easily see that there exists an open set $ W \subseteq U \times \mathbf{R} $ with $ z\in W $, an open set $ V \subseteq U $ with $ x \in V $, and a smooth function $ g : V \rightarrow \mathbf{R} $ such that $ f(x) = g(x)$ and

\begin{equation*} W \cap B^{n+1}(z+s\nu, s) = \{(y,u) : y \in V, \; u \gt g(y)\}; \end{equation*}

in particular $ f(y) \leq g(y) $ for every $ y \in V $. It follows that $ x \in \mathcal{S}^\ast(f) $, $ x \in {\rm Diff}(f) $ and $ D f(x) = D g(x) $ by lemma 2.17. Noting that

\begin{equation*} \nu = \frac{(-\nabla g(x), 1)}{\sqrt{1 + | \nabla g(x)|^2}} \end{equation*}

we conclude $(z,\nu) = \Phi_f(x) $ and $ N_f \cap (A \times \mathbf{R} \times \mathbf{R}^{n+1}) \subseteq \Phi_f(\mathcal{S}^\ast(f)\cap A) $.

The opposite inclusion is clear, since for every $ x \in \mathcal{S}^\ast(f) $ there exists a polynomial function P and an open neighbourhood V of x, such that $ P(x) = f(x) $ and $ P(y) \geq f(y) $ for every $ y \in V $.

We prove now the area formula in (3.7). Since $ \Phi_f $ is a $ W^{1,n} $-map (see remark 3.3), we apply lemma 2.19 with f replaced by $ \Phi_f $ and we find countably many $ \mathcal{L}^n $-measurable sets Bi of U such that $ {\rm Lip} \big(\Phi_f|B_i\big) \lt \infty $ for every $ i \geq 1 $ and

\begin{equation*} \mathcal{L}^n\bigg(U \setminus \bigcup_{i=1}^\infty B_i \bigg) =0. \end{equation*}

Then we set

\begin{equation*} A_1 = B_1 \cap \mathcal{S}^\ast(f), \qquad A_i = B_i \cap \mathcal{S}^\ast(f) \setminus {\textstyle\bigcup_{\ell = 1}^{i-1}} B_\ell \quad \text{for}\ i \geq 2 \end{equation*}

and we notice that

(3.9)\begin{equation} \mathcal{L}^n \big( U \setminus \textstyle{\bigcup_{i=1}^\infty} A_i\big)=0 \quad \text{and} \quad \mathcal{H}^n\big(N_f \setminus \textstyle{\bigcup_{i=1}^\infty} \Phi_f(A_i) \big) =0 \end{equation}

by lemma 2.16, lemma 3.5, and (3.6). If $ \beta : U \times \mathbf{R} \times \mathbf{R}^{n+1} \rightarrow \mathbf{R} $ is a $ \mathcal{H}^n $-measurable non-negative function, firstly we notice that (cf. [Reference Federer10, 2.4.8])

\begin{equation*} \int_{U} \beta(\Phi_f(x))\, \operatorname{ap} J_n \Phi_f(x)\, d\mathcal{L}^n(x) = \sum_{i=1}^\infty \int_{A_i}\beta(\Phi_f(x))\,\operatorname{ap} J_n\Phi_f(x)\, d\mathcal{L}^n(x), \end{equation*}

then, recalling [Reference Federer10, 2.10.43], we use the area formula for Lipschitzian maps in [Reference Federer10, 3.2.5] and the injectivity of $ \Phi_f $ to compute

\begin{equation*} \int_{A_i}\beta(\Phi_f(x))\,\operatorname{ap} J_n\Phi_f(x)\, d\mathcal{L}^n(x) =\int_{\Phi_f(A_i)}\beta(y)\, d\mathcal{H}^n(y) \qquad \text{for}\ i \geq 1 \end{equation*}

and we use (3.9) to conclude

\begin{align*} \int_{U} \beta(\Phi_f(x))\, \operatorname{ap} J_n \Phi_f(x)\, d\mathcal{L}^n(x) & = \sum_{i=1}^\infty \int_{\Phi_f(A_i)}\beta(y)\, d\mathcal{H}^n(y)\\ & = \int_{N_f}\beta(y)\, d\mathcal{H}^n(y). \end{align*}

Choosing β = 1 we conclude that $ \mathcal{H}^n(N_f) \lt \infty $ and we deduce that $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, (z,\nu)) $ is an n-dimensional plane for $ \mathcal{H}^n $ a.e. $(z, \nu) \in N_f $. Let Di be the set of $x \in A_i $ such that $\boldsymbol{\Theta}^n(\mathcal{L}^n\operatorname{\llcorner} \mathbf{R}^n \setminus A_i, x) = 0 $, $ \operatorname{ap} D \Phi_f(x) $ is injective and $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, \Phi_f(x)) $ is an n-dimensional plane. Noting [Reference Federer10, 2.10.19] and remark 3.3, we deduce that

\begin{equation*} \mathcal{H}^n \big(A_i \setminus D_i\big) =0. \end{equation*}

Noting that $ \operatorname{Tan}^n(\mathcal{L}^n \operatorname{\llcorner} A_i , x) = \mathbf{R}^n $ for $ x \in D_i $, and noting that $ \Psi|A_i $ is a bi-lipschitz homeomorphism onto $ \Phi_f(A_i) $, we employ [Reference Santilli40, Lemma B.2] to conclude

\begin{align*} \operatorname{ap} D \Phi_f(x)[\mathbf{R}^n] & = D \Psi_i(x)\big[\operatorname{Tan}^n(\mathcal{L}^n \operatorname{\llcorner} A_i, x)\big]\\ & \subseteq \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \Psi_i(A_i), \Phi_f(x)) \subseteq \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, \Phi_f(x)) \end{align*}

for every $ x \in D_i $. Since $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, \Phi_f(x)) $ is an n-dimensional plane and $ \operatorname{ap} D \Phi_f(x) $ is injective for every $ x \in D_i $, we conclude that

\begin{equation*} \operatorname{ap} D \Phi_f(x)[\mathbf{R}^n] = \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, \Phi_f(x)) \quad \text{for every}\ x \in D_i . \end{equation*}

Theorem 3.9. If $ U \subseteq \mathbf{R}^{n} $ is a bounded open set and $ f \in W^{2,n}(U) \cap C(U) $, then there exists a Borel n-vectorfield η on Nf such that

\begin{equation*} (\mathcal{H}^n \operatorname{\llcorner} N_f) \wedge \eta\ \text{is a Legendrian cycle of}\ U \times \mathbf{R} \end{equation*}

and, for $ \mathcal{H}^n $ a.e. $(z,\nu) \in N_f $,

\begin{equation*} | \eta(z, \nu)| =1, \quad \eta(z, \nu)\ \text{is simple}, \end{equation*}
\begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, (z, \nu))\ \text{is associated with}\ \eta(z, \nu) , \end{equation*}
\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta(z,\nu)) \wedge \nu, E' \rangle \gt 0. \end{equation*}

Proof. We identify $ \mathbf{R}^{n+1} \simeq \mathbf{R}^{n} \times \mathbf{R}$ and we consider the orthonormal basis $ \epsilon_1, \ldots , \epsilon_n $ of Rn such that $ (\epsilon_i,0) = e_i $ for $ i =1, \ldots, n $ (cf. (2.3)). We use the notation $ D_1, \ldots D_n $ and $ \operatorname{ap} D_1 , \ldots , \operatorname{ap} D_n $ for the partial derivatives and the approximate partial derivatives with respect to $ \epsilon_1, \ldots , \epsilon_n $, respectively. We notice by [Reference Federer10, 3.1.4] that $ \operatorname{ap} D_i \Phi_f $ is a $ \mathcal{L}^n \operatorname{\llcorner} U $-measurable map for $ i = 1, \ldots , n $. Henceforth, by the classical Lusin theorem (cf. [Reference Federer10, 2.3.5, 2.3.6]) there exists a Borel map $ \xi_i : U \rightarrow \mathbf{R}^{n} \times \mathbf{R} \times \mathbf{R}^{n+1} $ such that ξi is $ \mathcal{L}^n \operatorname{\llcorner} U $ almost equal to $ \operatorname{ap} D_i \Phi_f $ for $ i = 1, \ldots , n $.

Since $ \int_U | \xi_1 \wedge \cdots \wedge \xi_n |\, d\mathcal{L}^n \lt \infty $ by remark 3.3, we define

(3.10)\begin{equation} T(\phi) = \int_U \langle \xi_1(x) \wedge \cdots \wedge \xi_n(x), \phi(\Phi_f(x)) \rangle\, d\mathcal{L}^n(x) \end{equation}

for $ \phi \in \mathcal{D}^n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) $ and we notice that $ T \in \mathcal{D}_n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) $. We choose now a sequence $ f_k \in C^\infty(U)\cap W^{2,n}(U) $ such that $f_k \to f$ in $ W^{2,n}(U) $, $ f_k(x) \to f(x) $ and $ \mathbf{D} f_k(x) \to \mathbf{D} f(x) $ for $ \mathcal{L}^n $ a.e. $ x \in U $; see [Reference Gilbarg and Trudinger11, Theorem 7.9]. Since $ \Phi_{f_k} : U \rightarrow U \times \mathbf{R} \times \mathbf{R}^{n+1} $ is a smooth proper map, we define

\begin{equation*} T_k = (\Phi_{f_k})_{\#}\big( (\mathcal{L}^n \operatorname{\llcorner} U) \wedge \epsilon_1 \wedge \cdots \wedge \epsilon_n \big) \in \mathcal{D}_n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) \end{equation*}

and we prove that

(3.11)\begin{equation} T_k \to T \ \text{in}\ \mathcal{D}_n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) . \end{equation}

Noting that

\begin{equation*}T_k(\phi) = \int_{U} \langle D_1 \Phi_{f_k}(x) \wedge \cdots \wedge D_n \Phi_{f_k}(x), \phi(\Phi_{f_k}(x)) \rangle\, d\mathcal{L}^n(x)\end{equation*}

whenever $ \phi \in \mathcal{D}^n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) $, we estimate

(3.12)\begin{align} |T_k&(\phi) - T(\phi) |\\ & \leq \int_U \big| \langle D_1 \Phi_{f_k}(x) \wedge \cdots \wedge D_n \Phi_{f_k}(x) - \xi_1(x) \wedge \cdots \wedge \xi_n(x), \phi(\Phi_{f_k}(x)) \rangle\big|\, d\mathcal{L}^n(x)\notag \\ & \quad + \int_U \big|\langle \xi_1(x) \wedge \cdots \wedge \xi_n(x), \phi(\Phi_{f_k}(x)) - \phi(\Phi_f(x)) \rangle\big| \, d\mathcal{L}^n(x)\notag \\ & \leq \| \phi \|_{L^\infty(U)} \int_U \big| D_1 \Phi_{f_k}(x) \wedge \cdots \wedge D_n \Phi_{f_k}(x) - \xi_1(x) \wedge \cdots \wedge \xi_n(x)\big|\, d\mathcal{L}^n(x) \notag\\ & \quad + \int_U \text{ap}\,J_n\Phi_f(x)\, \| \phi(\Phi_f(x)) - \phi(\Phi_{f_k}(x)) \|\, d\mathcal{L}^n(x) \notag \end{align}

for $ \phi \in \mathcal{D}^n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) $. Moreover, noting that $ \operatorname{ap} J_n \Phi_f \in L^1(U) $ (see remark 3.3) and

\begin{equation*} \operatorname{ap} J_n \Phi_f(x) \, \| \phi(\Phi_f(x)) - \phi(\Phi_{f_k}(x)) \| \leq 2 \| \phi \|_{L^\infty(U \times \mathbf{R} \times \mathbf{R}^n)} \operatorname{ap} J_n\Phi_f(x) \end{equation*}

for $ \mathcal{L}^n $ a.e. $ x \in U $ and for every $ k \geq 1 $, it follows from the dominated convergence theorem that

(3.13)\begin{equation} \lim_{k \to \infty}\int_U \operatorname{ap} J_n\Phi_f(x)\, \| \phi(\Phi_f(x)) - \phi(\Phi_{f_k}(x)) \|\, d\mathcal{L}^n(x) =0. \end{equation}

We observe that

\begin{align*} &D_1 \Phi_{f_k} \wedge \cdots \wedge D_n \Phi_{f_k} - \xi_1 \wedge \cdots \wedge \xi_n \\ & \quad = \sum_{i=1}^{n} \xi_1 \wedge \cdots \wedge \xi_{i-1} \wedge \big(D_i \Phi_{f_k}-\xi_i\big) \wedge D_{i+1} \Phi_{f_k} \wedge \cdots \wedge D_n\Phi_{f_k} \end{align*}

and we use the generalized Holder’s inequality to estimate

(3.14)\begin{align} &\int_U \big| D_1 \Phi_{f_k} \wedge \cdots \wedge D_n \Phi_{f_k} - \xi_1 \wedge \cdots \wedge \xi_n\big|\, d\mathcal{L}^n\\ & \quad \leq \sum_{i=1}^n \int_U \big|\xi_1 \wedge \cdots \wedge \xi_{i-1}\big|\cdot \big| \xi_i - D_i \Phi_{f_k}\big|\cdot \big| D_{i+1} \Phi_{f_k} \wedge \cdots \wedge D_n\Phi_{f_k}\big|\,d\mathcal{L}^n \notag \\ & \quad \leq \sum_{i=1}^n \int_U \| \operatorname{ap}D \Phi_f \|^{i-1}\cdot \| \operatorname{ap}D \Phi_f - D \Phi_{f_k}\| \cdot \| D\Phi_{f_k} \|^{n-i}\, d\mathcal{L}^n \notag \\ & \quad \leq \sum_{i=1}^n \bigg(\int_U \| \operatorname{ap}D \Phi_f \|^{n}\, d\mathcal{L}^n \bigg)^{\frac{i-1}{n}}\cdot \bigg( \int_U \| \operatorname{ap}D \Phi_f - D \Phi_{f_k}\|^{n}\, d\mathcal{L}^n \bigg)^{\frac{1}{n}}\notag\\ &\qquad\cdot \bigg(\int_U \| D\Phi_{f_k} \|^{n}\, d\mathcal{L}^n\bigg)^{\frac{n-i}{n}}.\notag \end{align}

Moreover, by (3.2),

\begin{align*} & \int_U \| D \Phi_{f_k} - \operatorname{ap}D \Phi_f \|^n \, d\mathcal{L}^n\\ & \quad\leq c(n)\bigg( \int_U \| D \overline{f}_k - \mathbf{D} \overline{f} \|^n \, d\mathcal{L}^n + \int_U \| D (\psi \circ \nabla f_k) - \mathbf{D} ( \psi \circ \boldsymbol{\nabla}f) \|^n \, d\mathcal{L}^n\bigg)\\ & \quad\leq c(n)\bigg( \int_U \| D \overline{f}_k - \mathbf{D} \overline{f} \|^n \, d\mathcal{L}^n + \int_U \| D \psi (\nabla f_k)\|^n \|D^2 f_k - \mathbf{D}^2 f_k \|^n\, d\mathcal{L}^n \\ & \qquad + \int_U \| D \psi(\nabla f_k) - D \psi(\boldsymbol{\nabla} f) \|^n \| \mathbf{D}^2 f \|^n\, d\mathcal{L}^n\bigg)\\ & \quad\leq c(n) \bigg( \int_U \| D \overline{f}_k - \mathbf{D} \overline{f} \|^n \, d\mathcal{L}^n + \int_U \|D^2 f_k - \mathbf{D}^2 f_k \|^n\, d\mathcal{L}^n \\ & \qquad+ \int_U \| D \psi(\nabla f_k) - D \psi(\boldsymbol{\nabla} f) \|^n \| \mathbf{D}^2 f \|^n\, d\mathcal{L}^n\bigg) \end{align*}

and

\begin{equation*} \lim_{k \to \infty}\int_U \| D \psi(\nabla f_k) - D \psi(\boldsymbol{\nabla} f) \|^n \| \mathbf{D}^2 f \|^n\, d\mathcal{L}^n = 0 \end{equation*}

by dominated convergence theorem. Consequently, $ \| D \Phi_{f_k} - \mathbf{D} \Phi_f \|_{L^n(U)} \to 0 $, and combining (3.12), (3.13), and (3.14) we obtain (3.11).

Since $ \partial T_k =0 $ for every $ k \geq 1 $, we readily infer from (3.11) that $ \partial T =0 $. Define $ G = [\Phi_f|\mathcal{S}^\ast(f)]^{-1} : N_f \rightarrow U $ and notice that G is simply the restriction on Nf of the linear function that maps a point of $ \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ onto its first n coordinates; in particular G is a Borel map (recall that Nf is a Borel set). We employ lemma 3.8 to see that

(3.15)\begin{equation} T(\phi) = \int_{N_f} \langle \xi\big[G(z,\nu)\big], \phi(z,\nu) \rangle\, d\mathcal{H}^n(z, \nu) \end{equation}

for every $ \phi \in \mathcal{D}^n(U \times \mathbf{R} \times \mathbf{R}^{n+1}) $, where $ \xi : U \rightarrow \bigwedge_n(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1})$ is the Borel map defined as

\begin{equation*} \xi(x) = \frac{\xi_1(x) \wedge \cdots \wedge \xi_n(x)}{\big|\xi_1(x) \wedge \cdots \wedge \xi_n(x)\big|}. \end{equation*}

Then we define the Borel map

\begin{equation*} \eta : N_f \rightarrow {\textstyle\bigwedge_n}(\mathbf{R}^{n+1} \times \mathbf{R}^{n+1}), \quad \eta = \xi \circ G, \end{equation*}

and we readily infer that $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} N_f, (z, \nu)) $ is associated with $ \eta(z, \nu) $ for $ \mathcal{H}^n $ a.e. $(z, \nu) \in N_f $ by lemma 3.8, and $ (\mathcal{H}^n \operatorname{\llcorner} N_f) \wedge \eta $ is a Legendrian cycle by lemma 2.11. Finally, we use remark 3.3 and shuffle formula (see [Reference Federer10, p. 19]) to compute

\begin{align*} \big\langle \big[\textstyle{\bigwedge_n \pi_0}\big]&(\xi(x)) \wedge \psi(\nabla f(x)), E' \big\rangle\\ & = \frac{1}{\operatorname{ap} J_n \Phi_f(x)} \, \langle D_1\overline{f}(x) \wedge \cdots \wedge D_n\overline{f}(x) \wedge \psi(\nabla f(x)), E' \rangle \\ & = \frac{e'_{n+1}(\psi(\nabla f(x)))}{\operatorname{ap} J_n \Phi_f(x)} \gt 0 \end{align*}

for $ \mathcal{L}^n $ a.e. $ x \in U $.

4. The support of Legendrian cycles

Suppose $ C \subseteq \mathbf{R}^{n+1} $. We define $\operatorname{Unp}(C) $ as the set of $ x \in \mathbf{R}^{n+1} \setminus \overline{C} $ such that there exists a unique $ y \in \overline{C} $ with $ {\rm dist}(x, C) = | y-x| $. It is well known that $ \mathbf{R}^{n+1} \setminus (\overline{C} \cup \operatorname{Unp}(C)) $ is the set of points in $ \mathbf{R}^{n+1} \setminus \overline{C} $, where $ {\rm dist}(\cdot, C) $ is not differentiable, see [Reference Kolasinski and Santilli20, Lemma 2.41(c)] and references therein. In particular, Rademacher theorem ensures that

(4.1)\begin{equation} \mathcal{L}^{n+1}( \mathbf{R}^{n+1} \setminus (\overline{C}\cup \operatorname{Unp}(C))) =0. \end{equation}

The nearest point projection ξC is multivalued function mapping $ x \in \mathbf{R}^{n+1} $ onto

\begin{equation*} \xi_C(x) = \{a \in C: | a-x| = {\rm dist}(x, C)\}. \end{equation*}

Notice that $ \xi_C| \operatorname{Unp}(C) $ is single-valued and we define

\begin{equation*} \nu_C(x) = \frac{x-\xi_C(x)}{{\rm dist}(x,C)} \quad \text{and} \quad \psi_C(x) =(\xi_C(x), \nu_C(x)) \end{equation*}

for $ x \in \operatorname{Unp}(C) $. It is well known (see [Reference Federer9, Theorem 4.8(4)]) that ξC, νC and ψC are continuous functions over $ \operatorname{Unp}(C) $ and it is easy to see that

(4.2)\begin{equation} \operatorname{nor}(C) = \psi_C(\operatorname{Unp}(C)). \end{equation}

We also define

\begin{equation*} \rho_C(x) = \sup\{s \gt 0: {\rm dist}(a + s(x-a), C) = s {\rm dist}(x, C)\} \end{equation*}

for $ x \in \mathbf{R}^{n+1} \setminus \overline{C} $ and $ a \in \xi_C(x) $. This definition does not depend on the choice of $ a \in \xi_C(x) $, the function $ \rho_C : \mathbf{R}^{n+1} \setminus \overline{C} \rightarrow [1, \infty] $ is upper-semicontinuous and we set

\begin{equation*} \operatorname{Cut}(C) = \{x \in \mathbf{R}^{n+1} \setminus \overline{C} : \rho_C(x) =1\}; \end{equation*}

see [Reference Kolasinski and Santilli20, Remark 2.32 and Lemma 2.33]. Finally, we define

\begin{equation*} S_t(C) = \{x \in \mathbf{R}^{n+1} : {\rm dist}(x, C) = t\} \qquad \text{for}\ t \gt 0 \end{equation*}

and we recall from [Reference Hug and Santilli14, Lemma 4.2(53)] that

(4.3)\begin{equation} \mathcal{H}^n(S_t(C) \cap \operatorname{Unp}(C) \cap \operatorname{Cut}(C)) =0 \qquad \text{for every}\ t \gt 0 . \end{equation}

We are ready to prove the following lemma.

Lemma 4.1. If $ C \subseteq \mathbf{R}^{n+1} $ and $ W \subseteq \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ is an open set such that $ W \cap \operatorname{nor}(C) \neq \varnothing $, then $ \mathcal{H}^n(W \cap \operatorname{nor}(C)) \gt 0. $

Proof. Notice that $ \mathbf{R}^{n+1} \setminus \overline{C} \neq \varnothing $ since $ \operatorname{nor}(C) \neq \varnothing $. It follows from the continuity of ψC that $ \psi_C^{-1}(W \cap \operatorname{nor}(C)) $ is relatively open in $ \operatorname{Unp}(C) $. Henceforth, we conclude from (4.1) that

\begin{equation*} \mathcal{L}^{n+1}\big(\psi_C^{-1}(W \cap \operatorname{nor}(C))\big) \gt 0. \end{equation*}

We define $ T = \psi_C^{-1}(W \cap \operatorname{nor}(C)) $. Since $ J_1 {\rm dist}(\cdot, C) $ is $ \mathcal{L}^{n+1} $ almost equal to the constant function 1 on $ \mathbf{R}^{n+1} \setminus \overline{C} $, we use coarea formula to compute

\begin{equation*} 0 \lt \mathcal{L}^{n+1}(T) = \int\mathcal{H}^n(T \cap S_t(C))\, dt \end{equation*}

we infer there exists τ > 0 so that $ \mathcal{H}^n(T \cap S_\tau(C)) \gt 0 $, and we use (4.3) to conclude

\begin{equation*} \mathcal{H}^n\big((T \cap S_\tau(C)) \setminus \operatorname{Cut}(C)\big) \gt 0. \end{equation*}

Consequently there exists $ s \gt \tau $ so that

\begin{equation*} \mathcal{H}^n \big(T \cap S_\tau(C) \cap \{\rho_C \geq s/ \tau\} \big) \gt 0. \end{equation*}

Since $ \psi_C | S_\tau(C) \cap \{\rho_C \geq s/ \tau\} $ is a bi-lipschitz homeomorphism by [Reference Hug and Santilli14, Theorem 3.16], we conclude that

\begin{equation*} \mathcal{H}^n \big(\psi_C\big[T \cap S_\tau(C) \cap \{\rho_C \geq s/ \tau\}\big] \big) \gt 0, \end{equation*}

whence we infer that $ \mathcal{H}^n(W \cap \operatorname{nor}(C)) \gt 0 $.

Remark 4.2. In relation with lemma 4.1, the following example is particularly appropriate.

Suppose $ 0 \lt \alpha \lt 1 $ and $f : \mathbf{R}^{n} \rightarrow \mathbf{R} $ is a $ C^{1, \alpha} $-function such that

\begin{equation*} \mathcal{H}^n(\{(x, f(x)) : x \in \mathbf{R}^n\} \cap B) =0 \end{equation*}

whenever B is an n-dimensional C 2-submanifold of $ \mathbf{R}^{n+1} $. The existence of this type of functions is proved in [Reference Kohn33]. We define $ M = \{(x, f(x)) : x \in \mathbf{R}^n\} $, we choose $ \nu : M \rightarrow \mathbf{S}^n $ a unit-normal vector field of M of class $ C^{0, \alpha} $ and we define

\begin{equation*} N^{+} = \{(x, \nu(x)) : x \in M\} \quad \text{and} \quad N^{-} = \{(x, -\nu(x)) : x \in M\}. \end{equation*}

Clearly, $ N^+ $ and $ N^- $ are disjointed closed n-dimensional $ C^{0,\alpha} $-submanifolds without boundary of $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ and $ \operatorname{nor}(M) \subseteq N^+ \cup N^-$. Moreover, we notice that $ \mathcal{H}^n(\pi_0(\operatorname{nor}(M))) =0 $ since $ \pi_0(\operatorname{nor}(M)) $ is $ \mathcal{H}^n $-rectifiable of class 2 by [Reference Menne and Santilli25]. Noting that $ \pi_0| N^+ $ and $ \pi_0| N^- $ are homeomorphisms and recalling remark 2.10, we conclude that $ \operatorname{nor}(M) $ is a countably $ \mathcal{H}^n $-rectifiable subset of $ N^+ \cup N^- $ with empty relative interior.

For the next proof we recall that, for a subset $ C \subseteq \mathbf{R}^{n+1} $, the normal cone $ \operatorname{Nor}(C,z) $ (see [Reference Federer10, 3.1.21]) coincides with the cone of regular normals of C at z introduced in [Reference Rockafellar and Wets34, Definition 6.3] (and denoted there by $ \hat{N}_C(z) $), while $ \operatorname{nor}(C, z) $ is the cone of proximal normals of unit length of C at z defined in [Reference Rockafellar and Wets34, Example 6.16].

Lemma 4.3. Suppose $ U \subseteq \mathbf{R}^n $ is open and $ f \in C(U) $ such that $ \overline{\nabla f}[{\rm Diff}(f)] $ is a dense subset of $ U \times \mathbf{R}^n $. Then $ \operatorname{nor}(E_f) $ is dense in $ G \times \mathbf{S}^n_+ $, where $ G = \{(x, f(x)) : x \in U\} $.

Proof. First, we observe that

\begin{equation*} \psi(\nabla f(x)) \in \operatorname{Nor}(E_f, \overline{f}(x)) \qquad \text{for every}\ x \in {\rm Diff}(f) . \end{equation*}

Since ψ is a diffeomorphism of Rn onto $ \mathbf{S}^n_+ $ and f is continuous, the set $ \{(\overline{f}(x), \psi(\nabla f(x))) : x \in U\} $ is dense in $ G \times \mathbf{S}^n_+ $; consequently we infer that $ \operatorname{nor}(E_f) $ is dense in $ G \times \mathbf{S}^n_+ $ by standard approximation of regular normals, see [Reference Rockafellar and Wets34, Exercise 6.18(a)].

Fu in [Reference Fu17, p. 2260] observed that there exist continuous functions as in lemma 4.3 that belong to $ W^{2,n}(U) $. Consequently, combining lemma 4.1, lemma 4.3, and theorem 3.9, we conclude that there exists n-dimensional Legendrian cycles (of open subsets on $ \mathbf{R}^{n+1}$) whose support has positive $ \mathcal{H}^{2n} $-measure. This answers a question implicit in [Reference Rataj and Zähle29, Remark 2.3].

5. Reilly-type variational formulae for $ W^{2,n} $-domains

In this section, we study the structure of the unit normal bundle of a $ W^{2,n} $-domain (see theorem 5.7), and we prove the variational formulae for their mean curvature functions (see theorem 5.15). The latter extends the well known variational formulae obtained by Reilly in [Reference Reilly31] for smooth domains. As a corollary Minkowski–Hsiung formulae are also proved; see theorem 5.17.

Definition 5.1. (Viscosity boundary)

Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ be an open set. We define $ \partial^v_+ \Omega $ to be the set of all $ p \in \partial \Omega $ such that there exists $ \nu \in \mathbf{S}^n $ and r > 0 such that

\begin{equation*} B^{n+1}(p + r \nu, r) \cap \Omega = \varnothing \quad \text{and} \quad B^{n+1}(p - r \nu, r) \subseteq \Omega. \end{equation*}

[Notice $ \{p\} = \partial B(p+r\nu, r) \cap \partial B(p-r\nu, r) $.] Clearly for each $ p \in \partial^v_+ \Omega $ the unit vector ν is unique. This defines an exterior unit-normal vector field on $ \partial^v_+ \Omega $,

\begin{equation*} \nu_\Omega : \partial^v_+ \Omega \rightarrow \mathbf{S}^n. \end{equation*}

We introduce the notion of second-order rectifiability. Suppose $ X \subseteq \mathbf{R}^m $ and µ is a positive integer such that $ \mathcal{H}^\mu(X) \lt \infty $. We say that X is $\mathcal{H}^\mu$-rectifiable of class 2 if and only if there exists countably many µ-dimensional submanifolds $ \Sigma_i \subseteq \mathbf{R}^m $ of class 2 such that

\begin{equation*} {\textstyle \mathcal{H}^\mu\big( X \setminus \bigcup_{i=1}^\infty \Sigma_i\big) =0}. \end{equation*}

Lemma 5.2. Suppose $ X \subseteq \mathbf{R}^{n+1} $ is $ \mathcal{H}^n $-measurable and $ \mathcal{H}^n $-rectifiable of class 2, and $ \nu : X \rightarrow \mathbf{S}^{n}$ is a $ \mathcal{H}^n \operatorname{\llcorner} X $-measurable map such that

\begin{equation*} \nu(a) \in \operatorname{Nor}^n(\mathcal{H}^n \operatorname{\llcorner} X, a) \quad \text{for}\ \mathcal{H}^n \ \text{a.e.}\ a \in X . \end{equation*}

Then there exist countably many $ \mathcal{H}^n$-measurable sets $ X_i \subseteq X $ such that $ \mathcal{H}^n\big(X \setminus \bigcup_{i =1}^\infty X_i\big) =0 $ and $ {\rm Lip}(\nu|X_i) \lt \infty $; moreover, ν is $ \mathcal{H}^n \operatorname{\llcorner} X $-approximately differentiable at $ \mathcal{H}^n $ a.e. $ a \in X $ and $ \operatorname{ap} D \nu(a) $ is a symmetric endomorphism of $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} X, a) $.

Proof. Suppose $ \{\Sigma_i\}_{i \geq 1} $ is a countable family of C 2-hypersurfaces such that

\begin{equation*} \mathcal{H}^n\big(X \setminus {\textstyle\bigcup_{i=1}^\infty} \Sigma_i\big) =0 \end{equation*}

and $ \eta_i : \Sigma_i \rightarrow \mathbf{S}^n $ is a continuously differentiable unit-normal vector field with $ {\rm Lip}(\eta_i) \lt \infty $ for $ i \geq 1 $. By [Reference Federer10, 2.10.19(4)]

\begin{equation*} \Theta^n(\mathcal{H}^n \operatorname{\llcorner} X \setminus \Sigma_i, a) = \Theta^n(\mathcal{H}^n \operatorname{\llcorner} \Sigma_i \setminus X, a) =0 \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ a \in \Sigma_i \cap X , \end{equation*}

whence we infer that $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} X, a) = \operatorname{Tan}(\Sigma_i,a) $ for $ \mathcal{H}^n $ a.e. $ a \in \Sigma_i \cap X $. In particular, if we define

\begin{equation*} \Sigma_i^+ =\{a \in \Sigma_i \cap X : \eta_i(a) = \nu(a)\} \quad \text{and} \quad \Sigma_i^- =\{a \in \Sigma_i \cap X : \eta_i(a) = - \nu(a)\} \end{equation*}

we infer that $ \mathcal{H}^n\big(\Sigma_i \cap X \setminus (\Sigma_i^+ \cup \Sigma_i^-)\big) =0 $ for each $ i \geq 1 $. Moreover, employing again [Reference Federer10, 2.10.19(4)] we infer that

\begin{equation*} \Theta^n(\mathcal{H}^n \operatorname{\llcorner} X \setminus \Sigma_i^\pm, a) =0 \quad \text{for}\ \mathcal{H}^n \ \text{a.e.}\ a \in \Sigma_i^\pm, \end{equation*}

whence we deduce that ν is $ \mathcal{H}^n \operatorname{\llcorner} X $ approximately differentiable at a with

\begin{equation*} \operatorname{ap} D \nu(a) = \pm D\eta_i(a) \end{equation*}

for $ \mathcal{H}^n $ a.e. $ a \in \Sigma_i^\pm $. Finally, since $ D \eta_i(a) $ is symmetric, we conclude the proof.

We introduce now the class of $ W^{2,n} $-domains in a slightly more general fashion than the notion given in the Introduction.

Definition 5.3. An open set $ \Omega\subseteq \mathbf{R}^{n+1} $ is a $ W^{2,n} $-domain if and only there exists a couple $(\Omega', F) $, where

  1. (1) $ \Omega' \subseteq \mathbf{R}^{n+1} $ is an open set such that for each $ p \in \partial \Omega' $ there exist ϵ > 0, $ \nu \in \mathbf{S}^n $, a bounded open set $ U \subseteq \nu^\perp $ with $ 0 \in U $ and a continuous function $ f \in W^{2,n}(U)$ with $ f(0) =0 $ such that

    \begin{equation*} \{p + b + \tau \nu : b \in U, \, -\epsilon \lt \tau \leq f(b)\} = \overline{\Omega'} \cap \{p + b + \tau \nu: b \in U, \, -\epsilon \lt \tau \lt \epsilon \}, \end{equation*}
  2. (2) F is a C 2-diffeomorphism defined over an open set $ V \subseteq \mathbf{R}^{n+1} $ such that $ \overline{\Omega'} \subseteq V $, and

  3. (3) $ F(\Omega') = \Omega $.

Remark 5.4. This class of domains is invariant under images of C 2-diffeomorphisms, which is clearly a necessary condition in order to provide a natural framework to generalize Reilly’s variational formulae. We do not know if we really need to introduce the diffeomorphism F in the definition above; in other words, if $ \Omega' $ belongs to the class $ \mathcal{S} $ of domains satisfying only condition (1) of definition 5.3, is it true that $ F(\Omega') $ belongs to $ \mathcal{S} $ too?

We collect some basic properties of $ W^{2,n} $-domains.

Lemma 5.5. If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a $W^{2,n} $-domain, then the following statements hold.

  1. (1) $ \mathcal{H}^n(\partial \Omega \setminus \partial^v_+\Omega) =0 $ and $ K \cap \partial \Omega $ is $\mathcal{H}^n $-rectifiable of class 2 for every compact set $ K \subseteq \mathbf{R}^{n+1} $.

  2. (2) For $ \mathcal{H}^n $ a.e. $ p \in \partial \Omega $,

    \begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, p) = \operatorname{Tan}(\partial \Omega, p) = \nu_\Omega(p)^\perp. \end{equation*}
  3. (3) For every $ p \in \partial^v_+ \Omega $,

    \begin{equation*} \operatorname{Tan}^{n+1}(\mathcal{L}^{n+1} \operatorname{\llcorner} \Omega, p) = \operatorname{Tan}(\Omega, p) = \{v \in \mathbf{R}^{n+1}: v \bullet \nu_\Omega(p) \leq 0\}. \end{equation*}

Proof. Suppose $ \Omega = F(\Omega') $, where $ \Omega' $ and F are as in definition 5.3. Clearly, $ F(\partial \Omega') = \partial \Omega $ and $ F(\partial^v_+ \Omega') = \partial^v_+ \Omega $. Therefore, assertion (1) follows from theorem 2.16, theorem 7.6, and remark 7.7.

If $ p \in \partial^v_+ \Omega $, we have $ \operatorname{Tan}(\partial \Omega, p) \subseteq \nu_\Omega(p)^\perp; $ since $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, p) \subseteq \operatorname{Tan}(\partial \Omega, p) $ for every $ p \in \partial \Omega $ and $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, p) $ is an n-dimensional plane for $ \mathcal{H}^n $ a.e. $ p \in \partial \Omega $, we obtain (2). Finally it follows from definitions that $ \operatorname{Tan}(\Omega, p) = \{v \in \mathbf{R}^{n+1}: v \bullet \nu_\Omega(p) \leq 0\} $ and $ \operatorname{Tan}^{n+1}(\mathcal{L}^{n+1} \operatorname{\llcorner} \Omega, p) = \{v \in \mathbf{R}^{n+1}: v \bullet \nu_\Omega(p) \leq 0\} $ for every $ p \in \partial^v_+ \Omega $.

By lemma 5.2 the map $ \nu_\Omega $ is $ \mathcal{H}^n \operatorname{\llcorner} \partial \Omega $-approximately differentiable with a symmetric approximate differential $ \operatorname{ap} D \nu_\Omega(x) $ at $ \mathcal{H}^n $ a.e. $ x \in \partial \Omega $. Consequently we introduce the following definition.

Definition 5.6. (Approximate principal curvatures)

Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a $ W^{2,n} $-domain. The approximate principal curvatures of Ω are the R-valued $ (\mathcal{H}^n \operatorname{\llcorner} \partial \Omega) $-measurable maps

\begin{equation*} {\chi}_{\Omega, 1}, \ldots , {\chi}_{\Omega, n}, \end{equation*}

defined so that $ {\chi}_{\Omega, 1}(p) \leq \ldots \leq {\chi}_{\Omega, n}(p) $ are the eigenvalues of $ \operatorname{ap} D \nu_\Omega(p) $ for $ \mathcal{H}^n $ a.e. $ p \in \partial \Omega $.

We prove now the main structure theorem for the unit normal bundle $ \operatorname{nor}(\Omega) $ of a $ W^{2,n} $-domain.

Theorem 5.7 If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a $W^{2,n}$-domain then the following statements hold.

  1. (1) $ \mathcal{H}^n(\overline{\nu_\Omega}(Z)) =0 $, whenever $ Z \subseteq \partial^v_+ \Omega $ with $ \mathcal{H}^n(Z) =0 $.

  2. (2) $ \mathcal{H}^n\big(\operatorname{nor}(\Omega) \setminus \overline{\nu_\Omega}(\partial^v_+ \Omega)\big) =0 $.

  3. (3) $ \kappa_{\Omega, i}(x, u) = {\chi}_{\Omega, i}(x) $ for every $ i =1, \ldots , n $ and for $ \mathcal{H}^n $ a.e. $ (x,u)\in \operatorname{nor}(\Omega) $. In particular, $ \kappa_{\Omega,i}(x,u) \lt \infty $ for $ \mathcal{H}^n $ a.e. $ (x,u)\in \operatorname{nor}(\Omega) $.

  4. (4) If $ \partial \Omega $ is compact, then $ \mathcal{H}^n(\operatorname{nor}(\Omega)) \lt \infty $ and there exists a unique Legendrian cycle T of $ \mathbf{R}^{n+1} $ such that

    \begin{equation*} T = (\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)) \wedge \eta, \end{equation*}

    where η is a $ \mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega) $ measurable n-vectorfield such that

    \begin{equation*} | \eta(x, u)| =1, \quad \eta(x, u)\ \text{is simple}, \end{equation*}
    \begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega), (x, u))\ \text{is associated with}\ \eta(x, u) \end{equation*}

    and

    \begin{equation*} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta(x,u)) \wedge u, E' \rangle \gt 0 \end{equation*}

    for $ \mathcal{H}^n $ a.e. $(x,u) \in \operatorname{nor}(\Omega) $. In this case, $ \eta = \zeta_1 \wedge \ldots \wedge \zeta_n $, where

    \begin{equation*} \zeta_i = \Bigg(\frac{1}{\sqrt{1 + \kappa_{\Omega, i}^2}} \tau_i, \frac{\kappa_{\Omega,i}}{\sqrt{1 + \kappa_{\Omega,i}^2}}\tau_i \Bigg) \quad \text{for}\ i = 1, \ldots, n \end{equation*}

    and $ \tau_1(x,u), \ldots , \tau_n(x,u) $ are an orthonormal basis of $ u^\perp $ such that $ \tau_1(x,u) \wedge \ldots \wedge \tau_n(x,u) \wedge u = E $ for $ \mathcal{H}^n $ a.e. $(x,u) \in \operatorname{nor}(\Omega) $.

Proof. Suppose $ \Omega = F(\Omega') $, where $ \Omega' $ and F are as in definition 5.3. We recall the definition of $ \Psi_F $ from (2.13) and notice that

(5.1)\begin{equation} \Psi_F(\operatorname{nor}(\Omega')) = \operatorname{nor}(\Omega) \end{equation}

by [Reference Santilli41, Lemma 2.1]. Since $ F(\partial^v_+ \Omega') = \partial^v_+ \Omega $, we readily infer from (5.1) that

\begin{equation*} \Psi_F(x, \nu_{\Omega'}(x)) = (F(x), \nu_\Omega(F(x))) \quad \text{for every}\ x \in \partial^v_+\Omega' \end{equation*}

and

(5.2)\begin{equation} \Psi_F\big(\overline{\nu_{\Omega'}}(F^{-1}(S))\big) = \overline{\nu_\Omega}(S) \quad \text{for every}\ S \subseteq \partial^v_+ \Omega . \end{equation}

To prove the assertions in (1) and (2) we notice, firstly, that they are true for $ \Omega' $ as a consequence of lemma 3.5 and (3.6) of lemma 3.8; then we apply (5.1) and (5.2).

To prove (3) we first employ lemma 5.2 to find a countable family $ X_i \subseteq \partial^v_+ \Omega $ such that $ \mathcal{H}^n\big(\partial \Omega \setminus \bigcup_{i=1}^\infty X_i\big) =0 $ and $ {\rm Lip}(\nu_\Omega|X_i) \lt \infty $ for every $ i \geq 1 $; then we define Yi to be the set of $ x \in X_i $ such that $ \nu_\Omega $ is $ \mathcal{H}^n\operatorname{\llcorner} \partial \Omega $ approximately differentiable at x, $ \operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \partial \Omega, x) $ and $ \operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \operatorname{nor}(\Omega), \overline{\nu_\Omega}(x)) $ are n-dimensional planes, and $ \Theta^n(\mathcal{H}^n\operatorname{\llcorner} \partial \Omega \setminus X_i, x) =0 $. We notice that $ \overline{\nu_\Omega}| X_i $ is bi-lipschitz and, since $\operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \operatorname{nor}(\Omega), (x,u)) $ is an n-dimensional plane for $ \mathcal{H}^n $ a.e. $ (x,u) \in \operatorname{nor}(\Omega) $, we conclude that

\begin{equation*} \mathcal{H}^n(X_i \setminus Y_i) =0 \quad \text{for every}\ i \geq 1 . \end{equation*}

It follows from (1) and (2) that

(5.3)\begin{equation} \mathcal{H}^n\big(\operatorname{nor}(\Omega) \setminus {\textstyle\bigcup_{i=1}^\infty \overline{\nu_\Omega}(Y_i)}\big) =0. \end{equation}

We fix now $ x \in Y_i $. Then there exists a map $ g : \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $ pointwise differentiable at x such that $ \Theta^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega \setminus \{g = \overline{\nu_\Omega}\}, x) =0 $ and $ \operatorname{ap} D \overline{\nu_\Omega}(x) = D g(x) | \operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \partial \Omega, x) $; noting that $ \operatorname{ap} D \overline{\nu_\Omega}(x) $ is injective, $ g | X_i \cap \{g = \overline{\nu_\Omega}\} $ is bi-lipschitz and

\begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, x) = \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} X_i \cap \{g = \overline{\nu_\Omega}\}, x), \end{equation*}

we readily infer by [Reference Santilli40, Lemma B.2] that

\begin{equation*} \operatorname{ap}D \overline{\nu_\Omega}(x)[\operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \partial \Omega, x)] = \operatorname{Tan}^n(\mathcal{H}^n\operatorname{\llcorner} \operatorname{nor}(\Omega), \overline{\nu_\Omega}(x)). \end{equation*}

Henceforth, if $ \tau_1, \ldots , \tau_n $ is an orthonormal basis of $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, x) $ with $ \operatorname{ap} D \nu_\Omega(x)(\tau_i) = {\chi}_{\Omega, i}(x) \tau_i $ for $ i = 1, \ldots , n $, we conclude that

\begin{equation*} \Bigg\{\bigg(\frac{1}{\sqrt{1 + {\chi}_{\Omega, i}(x)^2}}\tau_i, \frac{{\chi}_{\Omega, i}(x)}{\sqrt{1 + {\chi}_{\Omega, i}(x)^2}}\tau_i\bigg): i = 1, \ldots, n\Bigg\} \end{equation*}

is an orthonormal basis of $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega), \overline{\nu_\Omega}(x)) $. Since x is arbitrarily chosen in Yi, thanks to (5.3), we deduce from the uniqueness stated in lemma 2.11 that

\begin{equation*} \kappa_{\Omega, i}(x,u) = {\chi}_{\Omega,i}(x) \quad \text{for}\ \mathcal{H}^n \ \text{a.e.}\ (x,u) \in \operatorname{nor}(\Omega). \end{equation*}

Finally, we prove (4). By lemma 2.11 we can choose maps $ \tau_1, \ldots , \tau_n $ defined $ \mathcal{H}^n $ a.e. on $ \operatorname{nor}(\Omega') $ such that $ \tau_{1}(x,u), \ldots , \tau_n(x,u), u $ is an orthonormal basis of $ \mathbf{R}^{n+1} $,

(5.4)\begin{equation} \tau_1(x,u) \wedge \cdots \tau_n(x,u) \wedge u = e_1 \wedge \cdots \wedge e_{n+1} \quad \text{for}\ \mathcal{H}^n \text{a.e.}\ (x,u)\in \operatorname{nor}(\Omega') \end{equation}

and the vectors

\begin{equation*} \zeta_i'(x,u) = \bigg(\frac{1}{\sqrt{1 + \kappa_{\Omega', i}(x,u)^2}} \tau_i(x,u), \frac{\kappa_{\Omega',i}(x,u)}{\sqrt{1 + \kappa_{\Omega',i}(x,u)^2}}\tau_i(x,u) \bigg), \quad i = 1, \ldots, n, \end{equation*}

form an orthonormal basis of $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega'), (x,u)) $ for $ \mathcal{H}^n $ a.e. $(x,u)\in \operatorname{nor}(\Omega') $. Then we define

\begin{equation*} \eta' = \zeta_1' \wedge \cdots \wedge \zeta_n' \end{equation*}

and notice that

\begin{equation*} | \eta'(x, u)| =1, \quad \eta'(x, u)\ \text{is simple}, \end{equation*}
\begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega'), (x, u))\ \text{is associated with}\ \eta'(x, u) \end{equation*}

and (see (2.2) and (2.5))

(5.5)\begin{equation} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta'(x,u)) \wedge u, E' \rangle \gt 0 \quad \text{(by 5.4)} \end{equation}

for $ \mathcal{H}^n $ a.e. $(x,u) \in \operatorname{nor}(\Omega') $. If $ p \in \partial \Omega' $, ϵ > 0, $ \nu \in \mathbf{S}^n $, $ U \subseteq \nu^\perp $ is a bounded open set with $ 0 \in U $ and $ f \in W^{2,n}(U)$ is a continuous function with $ f(0) =0 $ such that

\begin{equation*} \{p + b + \tau \nu : b \in U, \, -\epsilon \lt \tau \leq f(b)\} = \overline{\Omega'} \cap C_{U,\epsilon}, \end{equation*}

where $ C_{U, t} = \{p + b + \tau \nu: b \in U, \, -t \lt \tau \lt t \} $ for each $ 0 \lt t \leq \infty $, then we observe that

\begin{equation*} N_f = \operatorname{nor}(\Omega') \cap (C_{U, \epsilon} \times \mathbf{S}^n),\end{equation*}

where $ N_f = \operatorname{nor}(E_f) \cap (C_{U, \infty} \times \mathbf{S}^n) $ and $ E_f = \{p + b + \tau \nu : b \in U, \, -\infty \lt \tau \leq f(b)\} $. It follows from (5.5) and theorem 3.9 that $ \eta'| \big[ \operatorname{nor}(\Omega') \cap (C_{U,\epsilon} \times \mathbf{S}^n)\big] $ is $ \mathcal{H}^n $ almost equal to a Borel n-vectorfield defined over $ \operatorname{nor}(\Omega') \cap (C_{U,\epsilon} \times \mathbf{S}^n) $ and $ (\mathcal{H}^n \operatorname{\llcorner} \big[\operatorname{nor}(\Omega') \cap (C_{U,\epsilon} \times \mathbf{S}^n)\big]) \wedge \eta' $ is an n-dimensional Legendrian cycle of $ C_{U, \epsilon} $. Henceforth, we define the integer multiplicity locally rectifiable n-current

\begin{equation*} T' = \big(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega')\big) \wedge \eta' \end{equation*}

and we conclude by lemma 2.5 that T ʹ is a Legendrian cycle of $ \mathbf{R}^{n+1} $.

We define now $ \psi = \Psi_F | \operatorname{nor}(\Omega') $ and recalling (5.1) and noting that

(5.6)\begin{equation} \operatorname{ap} D \psi(\psi^{-1}(y,v)) = D \Psi_F(\psi^{-1}(y,v)) \end{equation}

for $ \mathcal{H}^n $ a.e. $ (y,v) \in \operatorname{nor}(\Omega) $, we define

\begin{equation*} \eta(y,v) = \frac{\big[{\textstyle \bigwedge_n \operatorname{ap} D \psi(\psi^{-1}(y,v))}\big] \eta'(\psi^{-1}(y,v))}{J^{\operatorname{nor}(\Omega')}_n \psi(\psi^{-1}(y,v))} \end{equation*}

for $ \mathcal{H}^n $ a.e. $ (y,v) \in \operatorname{nor}(\Omega) $. Since $ \Psi_F $ is a diffeomorphism we have that $ \eta(y,v) \neq 0 $ for $ \mathcal{H}^n $ a.e. $ (y,v) \in \operatorname{nor}(\Omega) $. We now apply [Reference Federer10, 4.1.30] with U, K, W, ξ, G and g replaced by $ \mathbf{R}^{n+1} \times \mathbf{R}^{n+1} $, $ \partial \Omega' \times \mathbf{S}^n $, $ \operatorname{nor}(\Omega') $, $ \Psi_F $ and ψ respectively. We infer that

\begin{equation*} (\Psi_F)_{\#}\big[(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega')) \wedge \eta' \big] = \big(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)\big) \wedge \eta \end{equation*}

and that $ | \eta(y,v) | = 1 $ and $ \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega), (y,v)) $ is associated with $ \eta(y,v) $ for $ \mathcal{H}^n $ a.e. $ (y,v) \in \operatorname{nor}(\Omega) $. Clearly, $ \big(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)\big) \wedge \eta $ is a cycle, and $\big[ \big(\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)\big) \wedge \eta\big] \operatorname{\llcorner} \alpha =0 $ by lemma 2.11. Finally, if $ \boldsymbol{\ast} $ is the Hodge-star operator with respect to E (cf. remark 5.8), since $ \tau_1(x,u) \wedge \cdots \wedge \tau_n(x,u) = (-1)^n\, (\boldsymbol{\ast}u) $ and

\begin{align*} & \big[{\textstyle \bigwedge_n} \pi_0 \big](\eta(\Psi_F(x,u))) \\ & \quad = \frac{1}{J_n^{\operatorname{nor}(\Omega')}\psi(x,u)}\, \Bigg(\prod_{i=1}^{n}\frac{1}{\sqrt{1 + \kappa_{\Omega', i}(x,u)^2}}\Bigg)\\ &\qquad\big[ D F(x)(\tau_1(x,u)) \wedge \cdots \wedge D F(x)(\tau_n(x,u))\big] \\ & \quad = \frac{(-1)^n}{J_n^{\operatorname{nor}(\Omega')}\psi(x,u)}\, \Bigg(\prod_{i=1}^{n}\frac{1}{\sqrt{1 + \kappa_{\Omega', i}(x,u)^2}}\Bigg)\, \big[ {\textstyle \bigwedge_n} D F(x)\big](\boldsymbol{\ast} u) \end{align*}

for $ \mathcal{H}^n $ a.e. $(x,u) \in \operatorname{nor}(\Omega') $, it follows by remark 5.8 below and (5.1) that either

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta(y,v)) \wedge v, E' \rangle \gt 0 \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (y,v) \in \operatorname{nor}(\Omega) \end{equation*}

or

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} \pi_0\big](\eta(y,v)) \wedge v, E' \rangle \lt 0 \quad \text{for}\ \mathcal{H}^n \text{a.e.}\ (y,v) \in \operatorname{nor}(\Omega) . \end{equation*}

This settles the existence part in statement (4). Uniqueness easily follows from the defining conditions of T and the representation of η follows from lemma 2.11.

Remark 5.8. Let $ \boldsymbol{\ast} : \mathbf{R}^{n+1} \rightarrow \bigwedge_{n}\mathbf{R}^{n+1} $ be the Hodge-star operator, taken with respect to E; cf. [Reference Federer10, 1.7.8]. We notice that if $ u \in \mathbf{S}^n $ and $ \tau_1, \ldots , \tau_n $ is an orthonormal basis of $ u^\perp $ such that $ u \wedge \tau_1 \wedge \cdots \wedge \tau_n = E $, then it follows from the shuffle formula [Reference Federer10, p. 18] that

\begin{equation*} \boldsymbol{\ast} u = \tau_{1} \wedge \cdots \wedge \tau_{n}. \end{equation*}

Using this remark, we prove that if $ F : \mathbf{R}^{n+1} \rightarrow \mathbf{R}^{n+1} $ is a diffeomorphism, then either

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} D F(x)\big](\boldsymbol{\ast} u) \wedge (D F(x)^{-1})^\ast(u), E'\rangle \gt 0 \quad \text{for every}\ (x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n \end{equation*}

or

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} D F(x)\big](\boldsymbol{\ast} u) \wedge (D F(x)^{-1})^\ast(u), E' \rangle \lt 0 \quad \text{for every}\ (x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n . \end{equation*}

By contradiction, assume that there exists $ (x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n $ such that

\begin{equation*} \langle \big[ {\textstyle\bigwedge_n} D F(x)\big](\boldsymbol{\ast} u) \wedge (D F(x)^{-1})^\ast(u), E' \rangle = 0 \end{equation*}

and choose an orthonormal basis $ \tau_1, \ldots, \tau_n $ of $ u^\perp $ such that $u \wedge \tau_1 \wedge \cdots \wedge \tau_n = e_1 \wedge \cdots \wedge e_{n+1} $. Henceforth, $ D F(x)(\tau_1) \wedge \cdots \wedge D F(x)(\tau_n) \wedge (D F(x)^{-1})^\ast(u) =0 $ and, since $ \{D F(x)(\tau_i) : i = 1, \ldots n\} $ are linearly independent, we conclude that there exists $ c_1, \ldots , c_n \in \mathbf{R} $ such that

\begin{equation*} (D F(x)^{-1})^\ast(u) = \sum_{i=1}^n c_i\, D F(x)(\tau_i). \end{equation*}

Applying $ D F(x)^{-1} $ to both sides and taking the scalar product with u, we get

\begin{equation*} \big[D F(x)^{-1} \circ (D F(x)^{-1})^\ast \big](u) \bullet u =0, \end{equation*}

whence we infer that $ (D F(x)^{-1})^\ast(u) =0 $, a contradiction.

Definition 5.9. Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a $ W^{2,n} $-domain. We denote by $ N_\Omega $ the Legendrian cycle given by theorem 5.7(4).

Remark 5.10. The proof of theorem 5.7(4) proves that if $ F : U \rightarrow V $ is a C 2-diffeomorphism between open subsets of $ \mathbf{R}^{n+1} $ and Ω is a bounded $ W^{2,n}$-domain such that $ \overline{\Omega} \subseteq U $, then

\begin{equation*} (\Psi_F)_{\#}(N_\Omega) = N_{F(\Omega)}. \end{equation*}

Definition 5.11. (r-th elementary symmetric function)

Suppose $ r \in \{1, \ldots , n\} $. The r-th symmetric function $ \sigma_r : \mathbf{R}^n \rightarrow \mathbf{R} $ is defined as

\begin{equation*} \sigma_r(t_1, \ldots , t_n) = \frac{1}{{n \choose r}}\sum_{\lambda \in \Lambda_{n, r}} t_{\lambda(1)}\cdots t_{\lambda(r)}, \end{equation*}

where $ \Lambda_{n,r} $ is the set of all increasing functions from $ \{1, \ldots , r\} $ to $ \{1, \ldots , n\} $. We set

\begin{equation*} \sigma_{0}(t_1, \ldots , t_n) = 1 \quad \text{for}\ (t_1, \ldots , t_n) \in \mathbf{R}^n . \end{equation*}

Definition 5.12. (r-th mean curvature function)

Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a $ W^{2,n} $-domain and $ r \in \{0, \ldots, n\} $. Then we define the r-th mean curvature function of Ω as

\begin{equation*} H_{\Omega,r}(z) = \sigma_r({\chi}_{\Omega, 1}(z), \ldots , {\chi}_{\Omega, n}(z)) \end{equation*}

for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $.

Lemma 5.13. If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $ W^{2,n} $-domain and ϕ is a smooth R-valued function over $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ then

\begin{equation*} [N_\Omega \operatorname{\llcorner} \varphi_{n-k}](\phi) = {n \choose k} \int_{\partial \Omega} H_{\Omega, k}(x)\, \phi(x, \nu_\Omega(x))\, d\mathcal{H}^n(x) \quad \text{for}\ k = 0, \ldots , n . \end{equation*}

Proof. We know by theorem 5.7(4) that $ N_{\Omega} = (\mathcal{H}^n \operatorname{\llcorner} \operatorname{nor}(\Omega)) \wedge (\zeta_1\wedge \ldots \wedge \zeta_n) $. Noting that

\begin{equation*} J_n^{\operatorname{nor}(\Omega)}\pi_0(x,u) = \prod_{i=1}^n \frac{1}{\sqrt{1 + \kappa_{\Omega,i}(x,u)^2}} \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (x,u) \in \operatorname{nor}(\Omega) , \end{equation*}

we employ theorem 5.7(3) to compute

\begin{align*} [N_\Omega \operatorname{\llcorner} \varphi_{n-k}](\phi) = {n \choose k} \int_{\operatorname{nor}(\Omega)} J_n^{\operatorname{nor}(\Omega)}\pi_0(x,u)\,\phi(x,u)\,H_{\Omega, k}(x)\, d\mathcal{H}^n(x,u), \end{align*}

whence we conclude using area formula in combination with theorem 5.7(2) and lemma 5.5(1).

Definition 5.14. (r-th total curvature measure)

If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $ W^{2,n} $-domain and $ r = 0 , \ldots, n $, we define

\begin{equation*} \mathcal{A}_r(\Omega) = \int_{\partial \Omega} H_{\Omega, r}\, d\mathcal{H}^n. \end{equation*}

Now we can quickly derive the following extension of Reilly’s variational formulae (cf. [Reference Reilly31]) to $W^{2,n}$-domain.

Theorem 5.15. Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $W^{2,n} $-domain and $ (F_t)_{t \in I} $ is a local variation of $ \mathbf{R}^{n+1} $ with initial velocity vector field V. Then

\begin{equation*} \frac{d}{dt}\mathcal{A}_{k-1}(F_t(\Omega)) \Big|_{t =0} = (n-k + 1) \int_{\partial \Omega} H_{\Omega, k}\, (\nu_\Omega \bullet V)\, d\mathcal{H}^n \quad \text{for}\ k = 1, \ldots , n \end{equation*}

and

(5.7)\begin{equation} \frac{d}{dt}\mathcal{A}_n(F_t(\Omega)) \Big|_{t =0} = 0. \end{equation}

Proof. Combining remark 5.10 and lemma 5.13 we obtain

\begin{equation*} \big[(\Psi_{F_t})_{\#}N_\Omega \big](\varphi_{n-k+1}) = N_{F_t(\Omega)}(\varphi_{n-k+1}) = {n \choose k-1} \mathcal{A}_{k-1}(F_t(\Omega)) \end{equation*}

for $ k = 1 , \ldots, n+1 $. Hence we use lemma 2.8 and again lemma 5.13 to compute

\begin{equation*} \frac{d}{dt}\big[(\Psi_{F_t})_{\#}N_\Omega \big](\varphi_{n-k+1}) \Big|_{t=0} = k\,{n \choose k}\int_{\partial \Omega} (V(x) \bullet \nu_\Omega(x))\, H_{\Omega, k}(x)\, d\mathcal{H}^n(x) \end{equation*}

for $ k = 1, \ldots , n $ and

\begin{equation*} \frac{d}{dt}\big[(\Psi_{F_t})_{\#}N_\Omega \big](\varphi_{0}) \Big|_{t=0} = 0. \end{equation*}

Remark 5.16. If Ω is a C 2-domain, then (5.7) follows from the Gauss–Bonnet theorem. The validity of the Gauss–Bonnet theorem for bounded $ W^{2,n} $-domains is an interesting open question, and (5.7) seems to point to a possible positive answer.

The following integral formulae can be easily deduced from theorem 5.15 by a standard procedure. For the C 2-regular domains these formulae are classic, see [Reference Hsiung13].

Corollary 5.17. If $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $ W^{2,n} $-domain and $ r \in \{1, \ldots, n\} $ then

\begin{equation*} \int_{\partial \Omega} H_{\Omega, r-1}(x)\, d\mathcal{H}^n(x) = \int_{\partial \Omega} (x \bullet \nu_\Omega(x))\, H_{\Omega, r}(x)\, d\mathcal{H}^n(x). \end{equation*}

Proof. We consider the local variation $ F_t(x) = e^t\, x $ for $ (x,t) \in \mathbf{R}^n \times \mathbf{R} $ and we notice that

\begin{equation*} \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} \partial \Omega, x) = \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} F_t(\partial \Omega), F_t(x)) \end{equation*}
\begin{equation*} \nu_{F_t(\Omega)}(F_t(x)) = \nu_\Omega(x) \quad \textrm{and} \quad {\chi}_{F_t(\Omega),i}(F_t(x)) = e^{-t} {\chi}_{\Omega,i}(x) \end{equation*}

for $ \mathcal{H}^n $ a.e. $ x \in \partial \Omega $ and $ i = 1, \ldots , n $. Henceforth, we compute by area formula

\begin{align*} \mathcal{A}_{r-1}(F_t(\Omega)) & = \int_{\partial F_t(\Omega)} H_{F_t(\Omega), r-1}\, d\mathcal{H}^n \\ & = e^{-(r-1)t} \int_{F_t(\partial \Omega)} H_{\Omega, r-1}(F_t^{-1}(y))\, d\mathcal{H}^n(y)\\ & = e^{(n-r+1)t} \int_{\partial \Omega} H_{\Omega, r-1}(x)\, d\mathcal{H}^n(x) \end{align*}

and we apply theorem 5.15.

Corollary 5.18. Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded $ W^{2,n} $-domain, $ k \in \{1, \ldots, n\} $ and

(5.8)\begin{equation} H_{\Omega, i}(z) \geq 0 \quad \text{for}\ i = 1, \ldots , k-1\ \text{and for}\ \mathcal{H}^n \text{a.e.}\ z \in \partial \Omega . \end{equation}

Then there exists $ P \subseteq \partial \Omega $ such that $ \mathcal{H}^n(P) \gt 0 $ and $ H_{\Omega, k}(z) \neq 0 $ for $ z \in P $.

Proof. Suppose $ H_{\Omega,k}(z) =0 $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. Then we can employ corollary 5.17 (with r = k) and use (5.8) (for $ i = k-1 $) to infer that $ H_{\Omega, k-1}(z) =0 $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. Now we repeat this argument with $ r = k-1 $ and $ i = k-2 $ to infer that $ H_{\Omega, k-2}(z) =0 $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $, and we continue until we obtain that $ H_{\Omega, 0}(z) =0 $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $, which means $ \mathcal{H}^n(\partial \Omega) =0 $. Since the latter is clearly impossible, we have proved the assertion.

6. Sphere theorems for $W^{2,n}$-domains

The results in the previous section in combination with the Heintze–Karcher inequality proved below can be used to generalize classical sphere theorems to $W^{2,n}$-domains.

Theorem 6.1 (Heintze–Karcher inequality)

Suppose $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded and connected $ W^{2,n} $-domain such that $ H_{\Omega, 1}(z) \geq 0 $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. Then

\begin{equation*} (n+1)\mathcal{L}^{n+1}(\Omega) \leq \int_{\partial \Omega} \frac{1}{H_{\Omega, 1}(x)}\, d\mathcal{L}^n(x). \end{equation*}

Moreover, if $ H_{\Omega, 1}(z) \geq \frac{\mathcal{H}^n(\partial \Omega)}{(n+1)\mathcal{L}^{n+1}(\Omega)} $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $ then Ω is a round ball.

Proof. We define $ \Omega' = \mathbf{R}^{n+1} \setminus \overline{\Omega} $ and notice that $ \Omega' $ is a $ W^{2,n} $-domain. Since $ \partial^v_+ \Omega' = \partial^v_+ \Omega $ and $ \nu_{\Omega'} = -\nu_\Omega $, it follows from theorem 5.7 that

\begin{equation*} \mathcal{H}^n\big(\operatorname{nor}(\Omega') \setminus \{(z, -\nu_\Omega(z)): z \in \partial^v_+\Omega\}\big) =0, \end{equation*}

and

\begin{equation*} -{\chi}_{\Omega,i}(z)= {\chi}_{\Omega',i}(z) = \kappa_{\Omega',i}(z, -\nu_\Omega(z)) \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ z \in \partial^v_+ \Omega . \end{equation*}

Henceforth,

(6.1)\begin{equation} \sum_{i=1}^n \kappa_{\Omega',i}(z,u) = - n\, H_{\Omega, 1}(z) \leq 0 \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (z,u) \in \operatorname{nor}(\Omega') \end{equation}

and we infer from theorem 2.13 and area formula [Reference Federer10, 3.2.20] that

(6.2)\begin{align} (n+1)\mathcal{L}^{n+1}(\Omega) & \leq \int_{\operatorname{nor}(\Omega')}J_n^{\operatorname{nor}(\Omega')}\pi_0(z,u)\,\frac{n}{|\sum_{i=1}^n \kappa_{\Omega',i}(z,u)|}\, d\mathcal{H}^n(z,u) \notag \\ & = \int_{\partial \Omega}\frac{1}{H_{\Omega,1}(z)}\, d\mathcal{H}^n(z). \end{align}

We assume now that $ H_{\Omega, 1}(z) \geq \frac{\mathcal{H}^n(\partial \Omega)}{(n+1)\mathcal{L}^{n+1}(\Omega)} $ for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. Then, we observe that

\begin{equation*} \mathcal{H}^n\bigg( \bigg\{z \in \partial \Omega: H_{\Omega, 1}(z) \geq (1+\epsilon)\frac{\mathcal{H}^n(\partial \Omega)}{(n+1)\mathcal{L}^{n+1}(\Omega)} \bigg\}\bigg) =0 \quad \text{for every}\ \epsilon \gt 0 , \end{equation*}

otherwise we would obtain a contradiction with the inequality (6.2) (cf. proof of [Reference Hug and Santilli14, Corollary 5.16]). This implies that

\begin{equation*} H_{\Omega, 1}(z) = \frac{\mathcal{H}^n(\partial \Omega)}{(n+1)\mathcal{L}^{n+1}(\Omega)} \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ z \in \partial \Omega , \end{equation*}

whence we infer that (6.2) holds with equality. Recalling (6.1) we deduce from theorem 2.13 that Ω must be a round ball.

Theorem 6.2. If $ k \in \{1, \ldots , n\} $, $ \lambda \in \mathbf{R} $ and $ \Omega \subseteq \mathbf{R}^{n+1} $ is a bounded and connected $ W^{2,n} $-domain such that

(6.3)\begin{equation} H_{\Omega, i}(z) \geq 0 \quad \text{for}\ i = 1, \ldots , k-1 \end{equation}

and

(6.4)\begin{equation} H_{\Omega, k}(z) = \lambda \end{equation}

for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $, then Ω is a round ball.

Proof. Combining theorem 5.17 and divergence theorem for sets of finite perimeter, (it is clear by lemma 5.5 that Ω is a set of finite perimeter whose reduced boundary is $\mathcal{H}^n$ almost equal to the topological boundary) we obtain

(6.5)\begin{align} \int_{\partial \Omega} H_{\Omega, k-1}\, d\mathcal{H}^n = \lambda \int_{\partial \Omega} x \bullet \nu_\Omega(x)\, d\mathcal{H}^n(x) = \lambda (n+1) \mathcal{L}^{n+1}(\Omega) \end{align}

and we infer that $ \lambda \geq 0 $. Hence we deduce from [Reference Hug and Santilli14, Lemma 2.2] and corollary 5.18 that

(6.6)\begin{equation} H_{\Omega, 1}(z)\geq \ldots \geq H_{\Omega, k-1}(z)^{\frac{1}{k-1}} \geq H_{\Omega, k}(z)^{\frac{1}{k}} =\lambda^{\frac{1}{k}} \gt 0 \end{equation}

for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. By (6.6),

\begin{equation*} \int_{\partial \Omega} H_{\Omega, k-1}(z)\, d\mathcal{H}^n(z) \geq \lambda^{\frac{k-1}{k}}\mathcal{H}^n(\partial \Omega) \end{equation*}

and combining with (6.5) we obtain

\begin{equation*} \lambda (n+1) \mathcal{L}^{n+1}(\Omega) \geq \lambda^{\frac{k-1}{k}}\mathcal{H}^n(\partial \Omega). \end{equation*}

Since λ > 0, we obtain from (6.6) that

(6.7)\begin{equation} H_{\Omega, 1}(z) \geq \frac{\mathcal{H}^n(\partial \Omega)}{(n+1)\mathcal{L}^{n+1}(\Omega)} \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ z \in \partial \Omega \end{equation}

and we conclude applying lemma 6.1.

Remark 6.3. Hypothesis (6.3) in theorem 6.2 can be equivalently replaced by the following assumption:

(6.8)\begin{equation} \frac{\partial \sigma_k}{\partial t_i}({\chi}_{\Omega, 1}(z), \ldots , {\chi}_{\Omega, n}(z)) \geq 0 \quad \text{for}\ i = 1, \ldots , n\ \text{and for}\ \mathcal{H}^n\ \text{a.e.}\ z \in \partial \Omega . \end{equation}

Assume (6.8) in place of (6.5) in theorem 6.2. Then, first we use [Reference Salani38, eq. (1.15)] to infer that

\begin{equation*} H_{\Omega, k-1}(z) = \frac{1}{k} \sum_{i=1}^n \frac{\partial \sigma_k}{\partial t_i}({\chi}_{\Omega, 1}(z), \ldots , {\chi}_{\Omega, n}(z)) \geq 0 \end{equation*}

for $ \mathcal{H}^n $ a.e. $ z \in \partial \Omega $. Then, as in (6.5), we deduce that $ \lambda \geq 0 $. Finally, we employ [Reference Salani38, Proposition 1.3.2] to infer (6.3).

7. Nabelpunksatz for Sobolev graphs

In this final section, we extend the Nabelpunktsatz to graphs of twice weakly differentiable functions in terms of the approximate curvatures of their graphs. In particular, theorem 7.6 provides a general version of the Nabelpunktsatz for $ W^{2,1} $-graphs. In view of well-known examples of convex functions, this result is sharp; see remark 7.8. In this section we use the symbols Di and $ \mathbf{D}^2_{ij} $ (respectively Di and $ D^2_{ij} $) for the distributional partial derivatives of a Sobolev function (respectively the classical partial derivatives of a function) with respect to the standard base $ e_1, \ldots , e_n $ of Rn.

Remark 7.1. Let $ U \subseteq \mathbf{R}^n $ be a connected open and $ f \in C^2(U) $. We define $ G = \{(x, f(x)) : x \in U\} $, and $ \nu : G \rightarrow \mathbf{S}^n \subseteq \mathbf{R}^{n+1} $ so that

(7.1)\begin{equation} \nu(\overline{f}(x)) = \frac{(-\nabla f(x), 1)}{\sqrt{1 + | \nabla f(x)|^2}} \end{equation}

for every $ x \in U $. Differentiating (7.1) we get

\begin{equation*} D \nu(\overline{f}(x))(v, D f(x)(v)) = \frac{(-D (\nabla f)(x)(v), 0)}{\sqrt{1 + | \nabla f(x)|^2}} - \frac{\nabla f(x) \bullet D(\nabla f)(x)(v)}{1 + | \nabla f(x)|^2}\nu(\overline{f}(x)) \end{equation*}

for every $ v \in \mathbf{R}^n $. We recall that G is umbilical if and only if there exists a function $ \lambda : G \rightarrow \mathbf{R} $ such that

\begin{equation*} D \nu(z) = \lambda(z) {\rm Id}\,_{\operatorname{Tan}(G,z)} \quad \forall z \in G. \end{equation*}

Therefore, noting that $ \operatorname{Tan}(G, \overline{f}(x)) = \{(v, D f(x)(v)): v \in \mathbf{R}^n\} $, we conclude that G is umbilical if and only if

(7.2)\begin{equation} \lambda(\overline{f}(x)) \big[e_i \bullet e_j + D_i f(x)D_j f(x) \big] = - \frac{D^2_{ij}f(x)}{\sqrt{1 + | \nabla f(x)|^2}} \end{equation}

for every $ x \in U $ and for every $ i, j = 1, \ldots , n $. It follows from [Reference Souam and Toubiana42] that if $ U \subseteq \mathbf{R}^n $ is a connected open set, $ f \in C^2(U) $ and $ \lambda : G \rightarrow \mathbf{R} $ is a function such that (7.2) holds for every $ x \in U $, then either $ \overline{f}(U) $ is contained in an n-dimensional plane or $ \overline{f}(U) $ is contained in an n-dimensional sphere.

The first result of this section generalizes remark 7.1 to $ W^{2,1} $-functions. Suppose $ U \subseteq \mathbf{R}^n $ is an open set, $ \nu \in \mathbf{S}^{n-1} $ and πν is the orthogonal projection onto $ \nu^\perp $. Then we define

\begin{equation*} U_\nu = \pi_\nu[U] \end{equation*}

and

\begin{equation*} U^\nu_y = \{t \in \mathbf{R} : y + t \nu \in U \} \subseteq \mathbf{R} \quad \text{for}\ y \in U_\nu . \end{equation*}

Notice that Uν is an open subset of $ \nu^\perp $ and $ U^\nu_y $ is an open subset of R for every $ y \in U_\nu $.

Lemma 7.2. Suppose $ U \subseteq \mathbf{R}^n $ be an open set, $g \in W^{1,1}_{\rm loc}(U) $ and $ k \in \{1, \ldots , n\} $ such that

\begin{equation*} \mathbf{D}_k g(x) =0 \quad \text{for}\ \mathcal{L}^n\ \text{a.e.}\ x \in U . \end{equation*}

Then for $ \mathcal{L}^{n-1} $ a.e. $ y \in U_{e_k} $ the function mapping $ t \in U^{e_k}_y $ into $ g(y+te_k) $ is $ \mathcal{L}^1 $ almost equal to a constant function.

Proof. It follows from [Reference Ziemer46, Theorem 2.1.4] that there exists a representative $ \tilde{g} $ of g such that the restriction of $ \tilde{g} $ on $ U^{e_k}_y $ is absolutely continuous and

\begin{equation*} \mathbf{D}_k g(y + t e_k) = \frac{d}{dt}\tilde{g}(y + te_k) \quad \text{for}\ \mathcal{L}^1 a.e.\ t \in U^{e_k}_y \end{equation*}

for $ \mathcal{L}^{n-1} $ a.e. $ y \in U_{e_k} $. It follows from the hypothesis that

\begin{equation*} \frac{d}{dt}\tilde{g}(y + te_k) =0 \end{equation*}

for $ \mathcal{L}^1 $ a.e. $ t \in U^{e_k}_y $ and for $ \mathcal{L}^{n-1} $ a.e. $ y \in U_{e_k} $, and we readily obtain the conclusion from the absolute continuity hypothesis of $ \tilde{g} $.

We prove now the first result of this section.

Theorem 7.3. Suppose $ U \subseteq \mathbf{R}^n $ is a connected open set, $ f \in W^{2,1}_{\rm loc}(U) $ and $ \mu : U \rightarrow \mathbf{R} $ is a function such that

(7.3)\begin{equation} \mu(x)\big[e_i \bullet e_j + \mathbf{D}_i f(x)\mathbf{D}_j f(x) \big] = - \frac{\mathbf{D}^2_{ij}f(x)}{\sqrt{1 + | \nabla f(x)|^2}} \end{equation}

for $ \mathcal{L}^n $ a.e. $ x \in U $ and for every $ i,j = 1, \ldots , n $.

Then, either f is $ \mathcal{L}^n $ almost equal to a linear function on U, or there exists an n-dimensional sphere S in $ \mathbf{R}^{n+1} $ such that $ \overline{f}(x) \in S $ for $ \mathcal{L}^n $ a.e. $ x \in U $.

Proof. Recall the diffeomorphism ψ from remark 3.2 and define $\eta = \psi \circ \boldsymbol{\nabla} f $. By the classical chain rule for Sobolev maps (cf. [Reference Gilbarg and Trudinger11]), $ \eta \in W^{1,1}_{\rm loc}(U, \mathbf{R}^{n+1}) $ and

\begin{align*} \mathbf{D}\eta(x)(v) & = \big[D \psi(\boldsymbol{\nabla} f(x)) \circ \mathbf{D} (\boldsymbol{\nabla}f)(x)\big](v)\\ & = \frac{(-\mathbf{D} (\boldsymbol{\nabla} f)(x)(v), 0)}{\sqrt{1 + | \boldsymbol{\nabla}f (x)|^2}} - \frac{\boldsymbol{\nabla} f(x) \bullet \mathbf{D}(\boldsymbol{\nabla}f)(x)(v)}{1 + | \boldsymbol{\nabla} f(x)|^2}\eta(x) \end{align*}

for $ \mathcal{L}^n $ a.e. $ x \in U $. In particular, noting that $ \eta(x) \bullet (e_j, \mathbf{D}_jf(x)) =0 $ for every $ j = 1, \ldots , n $ and for $ \mathcal{L}^n $ a.e. $ x \in U $, we employ the umbilicality condition to obtain

\begin{align*} \mathbf{D}_i \eta(x) \bullet (e_j, \mathbf{D}_j f(x)) & = - \frac{\mathbf{D}^2_{ij}f(x)}{\sqrt{1 + | \boldsymbol{\nabla} f(x)|^2}} \\ & = \mu(x) (e_i, \mathbf{D}_i f(x)) \bullet (e_j, \mathbf{D}_j f(x)) \end{align*}

for $ \mathcal{L}^n $ a.e. $ x \in U $ and for every $ i,j = 1, \ldots , n $. Consequently, for every $ i = 1, \ldots , n $ and for $ \mathcal{L}^n $ a.e. $ x \in U $ there exists $ \lambda_i(x) \in \mathbf{R} $ such that

(7.4)\begin{equation} \mathbf{D}_i \eta(x) - \mu(x) (e_i, \mathbf{D}_i f(x)) = \lambda_i(x) \eta(x). \end{equation}

On the other hand, since η is a unit-length vector, we see (again from the chain rule for Sobolev maps) that $ \eta(x) \bullet \mathbf{D}_i \eta(x) =0 $ for $ \mathcal{L}^n $ a.e. $ x \in U $ and for $ i = 1, \ldots, n $. Therefore, we infer from (7.4) that $ \lambda_i(x) =0 $ and

(7.5)\begin{equation} \mathbf{D}_i \eta(x) = \mu(x) (e_i, \mathbf{D}_i f(x)) = \mu(x) \mathbf{D}_i \overline{f}(x) \end{equation}

for $ \mathcal{L}^n $ a.e. $ x \in U $. For $ k = 1, \ldots , n $ let $ g_k \in W^{1,1}_{\rm loc}(U) $ be given by

\begin{equation*} g_k = - \frac{\mathbf{D}_k f}{\sqrt{1 + | \boldsymbol{\nabla}f|^2}}, \end{equation*}

and we notice from (7.5) that

(7.6)\begin{equation} \mathbf{D}_i g_j =0, \qquad \text{whenever}\ i , j \in \{1, \ldots , n\}\ \text{and}\ i \neq j , \end{equation}
(7.7)\begin{equation} \mathbf{D}_i g_i = \mu, \qquad \text{whenever}\ i \in \{1, \ldots , n\} . \end{equation}

We fix now an open cube $ Q \subseteq U $ with sides parallel to the coordinate axes, $ \phi \in C^\infty_c(Q) $ and $ k = 1, \ldots , n $, and we prove that

(7.8)\begin{equation} \int_Q \mu \, D_k \phi\, d\mathcal{L}^n =0. \end{equation}

Choose $ j \in \{1, \ldots , n\} $ with kj. Since by (7.6) we have that $ \mathbf{D}_k g_j =0 $, it follows from lemma 7.2 that for $\mathcal{L}^{n-1}$ a.e. $ y \in U_{e_k} $ there exists $ v_j(y) \in \mathbf{R} $ such that

\begin{equation*} g_j(y + t e_k) = v_j(y) \quad \text{for}\ \mathcal{L}^1\ \text{a.e.}\ t \in U^{e_k}_y. \end{equation*}

Now we use (7.7) to obtain

\begin{align*} \int_Q \mu \, D_k \phi\, d\mathcal{L}^n & = \int_Q \mathbf{D}_j g_j\, D_k \phi \, d\mathcal{L}^n \\ & = - \int_Q g_j\, D_j \big(D_k \phi\big)\, d\mathcal{L}^n \\ & = - \int_{Q_{e_k}} v_j(y)\int_{Q^y_{e_k}} D_k \big(D_j \phi\big)(y + te_k)\, d\mathcal{L}^1(t)\, d\mathcal{L}^{n-1}(y) =0, \end{align*}

where the last equality follows from the fact that the function mapping $ t \in Q^{e_k}_y $ into $ D_j \phi(y + t e_k) $ has compact support in $ Q^{e_k}_y $.

Since (7.8) holds for every open cube Q with sides parallel to the coordinate axes and for every $ \phi \in C^\infty_c(Q) $, and since U is connected, we infer from [Reference Federer10, 4.1.4] that

(7.9)\begin{equation} \mu\ \text{is}\ \mathcal{L}^n\ \text{almost equal to a constant function on}\ U . \end{equation}

Since U is connected, we combine (7.9) and (7.5) to infer that there exists $ c \in \mathbf{R} $ and $ w \in \mathbf{R}^{n+1} $ such that

\begin{equation*} \eta(x) - c \overline{f}(x) = w \quad \text{for}\ \mathcal{L}^n \ \text{a.e.}\ x \in U . \end{equation*}

If c ≠ 0 the last equation evidently implies that $ \overline{f}(x) \in \partial B^{n+1}(-w/c, 1/|c|) $ for $ \mathcal{L}^n $ a.e. $ x \in U $. If c = 0, we have that $ w \bullet e_{n+1} = (1 + |\boldsymbol{\nabla} f|^2)^{-1/2} $ and

\begin{equation*} \mathbf{D}_i f(x) = - \frac{w \bullet e_i}{w \bullet e_{n+1}} \quad \text{for}\ \mathcal{L}^n\ \text{a.e.}\ x \in U\ \text{and}\ i = 1, \ldots , n . \end{equation*}

This implies that f is $ \mathcal{L}^n $ almost equal to a linear function on U, since U is connected.

Definition 7.4. Suppose $ X \subseteq \mathbf{R}^{n+1} $ is $ \mathcal{H}^n $-measurable and $ \mathcal{H}^n $-rectifiable of class 2. We say that X is approximate totally umbilical if there exists a $ \mathcal{H}^n \operatorname{\llcorner} X $-measurable map ν such that $ \nu(x) \in \operatorname{Nor}^n(\mathcal{H}^n \operatorname{\llcorner} X,x) \cap \mathbf{S}^n $ and there exists a function $ \mu : X \rightarrow \mathbf{R} $ such that

(7.10)\begin{equation} \operatorname{ap} D \nu(x)(\tau) = \mu(x) \tau \quad \text{for every}\ \tau \in \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} X,x) , \end{equation}

for $ \mathcal{H}^n $ a.e. $ x \in X $ (keep in mind lemma 5.2).

Definition 7.5. (Lusin (N) condition)

Suppose $ U \subseteq \mathbf{R}^n $ is open and $ g : U \rightarrow \mathbf{R}^k $ ( $k \geq n $). We say that g satisfies the Lusin’s condition (N) if and only if $ \mathcal{H}^n(g(Z)) =0 $ for every $ Z \subseteq U $ with $ \mathcal{L}^n(Z) =0 $.

We are now ready to prove the second result of this section.

Theorem 7.6. Suppose $ U \subseteq \mathbf{R}^n $ is a bounded open set, $ f \in W^{2,1}(U) $, $ \overline{f} $ satisfies the Lusin’s condition (N) and $ G = \overline{f}(U) $.

Then G is $ \mathcal{H}^n $-rectifiable of class 2. Moreover, if G is approximate totally umbilical then, up to a $ \mathcal{H}^n $-negligible set, either G is a subset of an n-dimensional plane or a subset of an n-dimensional sphere.

Proof. By [Reference Calderón and Zygmund6, Theorem 13] and [Reference Federer10, 2.10.19(4), 2.10.43] we can find countably many functions $ g_1, g_2, \ldots \in C^2(\mathbf{R}^n) $ such that $ \mathcal{L}^n(U \setminus \bigcup_{i=1}^\infty \{g_i = f\}) =0 $ and $ {\rm Lip}(g_i) \lt \infty $ for every $ i \geq 1 $. Henceforth, thanks to the Lusin’s condition (N), we readily infer that G is $ \mathcal{H}^n $-rectifiable of class 2. We define Di as the set of $ x \in \{g_i = f\} $ such that

\begin{equation*} \Theta^n(\mathcal{L}^n \operatorname{\llcorner} U \setminus \{g_i = f\}, x) =0, \quad D g_i(x) = \mathbf{D} f(x) \end{equation*}

and $\operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, \overline{f}(x)) $ is an n-dimensional plane. Since $ D g_i(x) = \operatorname{ap} D f(x) $ for every $ x \in D_i $, it follows from [Reference Federer10, 2.10.19(4), 3.2.19] and lemma 2.19 that

\begin{equation*} \mathcal{L}^n(\{g_i = f\} \setminus D_i) =0 \quad \text{for every}\ i \geq 1 . \end{equation*}

Since $ \operatorname{Tan}^n(\mathcal{L}^n \operatorname{\llcorner} \{g_i = f\}, x) = \mathbf{R}^n $ for every $ x \in D_i $, and noting that $ \overline{g_i} : \mathbf{R}^n \rightarrow \overline{g_i}(\mathbf{R}^n) $ is a bi-lipschitz homeomorphism, we use [Reference Santilli40, Lemma B.2] to conclude

\begin{align*} \mathbf{D} \overline{f}(x)[\mathbf{R}^n] = D \overline{g_i}(x)[\operatorname{Tan}^n(\mathcal{L}^n \operatorname{\llcorner} \{g_i = f\}, x)] \subseteq \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, \overline{f}(x)) \end{align*}

for every $ x \in D_i $. Since $ \mathbf{D} \overline{f}(x) $ is injective whenever it exists, we conclude that

\begin{equation*} \mathbf{D} \overline{f}(x)[\mathbf{R}^n] = \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, \overline{f}(x)) \end{equation*}

and

\begin{equation*} \psi(\boldsymbol{\nabla} f(x)) \in \operatorname{Nor}^n(\mathcal{H}^n \operatorname{\llcorner} G, \overline{f}(x)) \end{equation*}

for every $ x \in D_i $ and $ i \geq 1 $. Let $ D = \bigcup_{i=1}^\infty D_i $ and notice that $ \mathcal{H}^n(G \setminus \overline{f}(D)) =0 $ (again by Lusin’s condition (N)). Let ν be the $ \mathcal{H}^n \operatorname{\llcorner} G $-measurable map defined by

\begin{equation*} \nu = \psi \circ \boldsymbol{\nabla} f \circ (\pi|G), \end{equation*}

where $ \pi : \mathbf{R}^n \times \mathbf{R} \rightarrow \mathbf{R}^n $ is the orthogonal projection onto Rn. We observe that if $ z \in \overline{f}(D_i) $ and $ \Theta^n(\mathcal{H}^n \operatorname{\llcorner} G \setminus \overline{f}(D_i), z) = 0 $, then ν is $ \mathcal{H}^n \operatorname{\llcorner} G $-approximately differentiable at z (since $ \nu| \overline{f}(D_i) = (\psi \circ \nabla g_i \circ \pi) | \overline{f}(D_i) $) and

\begin{align*} \operatorname{ap} D \nu(z)& = D(\psi \circ \nabla g_i \circ \pi)(z) \\ & = D(\psi \circ \nabla g_i)(\pi(z)) \circ \big(\pi| \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, z)\big) \\ & = \operatorname{ap} D(\psi \circ \boldsymbol{\nabla} f)(\pi(z)) \circ \big(\pi| \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, z)\big) \\ &= \mathbf{D}(\psi \circ \boldsymbol{\nabla} f)(\pi(z)) \circ \big(\pi| \operatorname{Tan}^n(\mathcal{H}^n \operatorname{\llcorner} G, z)\big), \end{align*}

whence we infer

(7.11)\begin{equation} \operatorname{ap} D \nu(z) \circ \mathbf{D} \overline{f}(\pi(z)) = \mathbf{D} (\psi \circ \boldsymbol{\nabla} f)(\pi(z)). \end{equation}

By [Reference Federer10, 2.10.19(4)] we conclude that (7.11) is true for $ \mathcal{H}^n $ a.e. $ z \in G $.

If G is approximate totally umbilical then it is easy to see that the unit normal vector field ν defined above fulfils the umbilicalilty condition in (7.10) with some function µ. Henceforth,

\begin{align*} \mu(\overline{f}(x))(e_{i} \bullet e_{j} + \mathbf{D}_{i}f(x)\mathbf{D}_{j}f(x))&= \big(\operatorname{ap} D \nu(\overline{f}(x)) \circ D \overline{f}(x)\big) (e_{i}) \bullet (e_{j}, \mathbf{D}_{j} f(x))\\ & = \mathbf{D}_{i}(\psi \circ \nabla f)(x) \bullet (e_{j}, \mathbf{D}_{j} f(x))\\ & = - \frac{\mathbf{D}^{2}_{ij}f(x)}{\sqrt{1+|\nabla f{(x)}|^{2}}} \end{align*}

for every $ i, j = 1, \ldots , n $ and for $ \mathcal{L}^n $ a.e. $ x \in U $. By theorem 7.3 and the Lusin’s condition (N), we deduce that, up to a $ \mathcal{H}^n $-negligible set, G is either a subset of an n-dimensional plane or a subset of an n-dimensional sphere of $ \mathbf{R}^{n+1} $.

Remark 7.7. If $ f \in W^{2,p}(U) $ with $ p \gt \frac{n}{2} $, then the Sobolev embedding theorem [Reference Gilbarg and Trudinger11, Theorem 7.26] ensures that $ f \in W^{1,p^\ast}(U) $ with $ p^\ast \gt n $. Henceforth, $ \overline{f} $ satisfies the Lusin’s condition (N) by [Reference Marcus and Mizel23, Theorem 1.1].

Remark 7.8. It is easy to find convex functions $ f \in C^{1,\alpha}(\mathbf{R}^n) $ such that the approximate principal curvatures of the graph are zero $ \mathcal{H}^n $ almost everywhere and the conclusion of theorem 7.6 fails. (Notice that the graph is $ \mathcal{H}^n $-rectifiable of class 2 and $ \overline{f} $ satisfies the Lusin’s condition (N).) Indeed the gradient of these functions are continuous maps of bounded variation whose distributional derivative is not a function. An example of such functions is given by the primitive of the ternary Cantor function.

Acknowledgements

The first author is partially supported by INDAM-GNSAGA of the Instituto Nazionale di Alta Matematica ‘Francesco Severi’, and by PRIN project no. 20225J97H5. The first author wishes to thank Slawomir Kolasinski for interesting discussions about the proof of lemma 2.7, and Ulrich Menne for sharing [Reference Menne24, Appendix B], which plays an important role in this paper.

Appendix A. Area of the proximal unit normal bundle

Lemma A.1. If $ C \subseteq \mathbf{R}^{n+1} $ is a closed set and $ M \subseteq \mathbf{R}^{n+1} $ is a k-dimensional submanifold of class 2 then there exists $ R \subseteq M \cap C $ such that:

  1. (1) $ \operatorname{nor}(C) \cap (R \times \mathbf{S}^n) \subseteq \operatorname{nor}(M) $;

  2. (2) $\mathcal{H}^k \big((M \cap C) \setminus R \big) =0.$

Proof. See the proof of [Reference Santilli40, Lemma 6.1].

Suppose $ C \subseteq \mathbf{R}^{n+1} $ is closed with $\mathcal{H}^n(C) \lt \infty $ and $ \Sigma = \pi_0(\operatorname{nor}(C)) $. It follows from [Reference Menne and Santilli25] that Σ is $ \mathcal{H}^n $-rectifiable of class 2. We fix a $ \mathcal{H}^n \operatorname{\llcorner} \Sigma $-measurable map $ \nu : \Sigma \rightarrow \mathbf{S}^n $ such that $ \nu(a) \in \operatorname{Nor}^n(\mathcal{H}^n \operatorname{\llcorner} \Sigma, a) $ for $ \mathcal{H}^n $ a.e. $ a \in \Sigma $ and we notice that it is $ \mathcal{H}^n \operatorname{\llcorner} \Sigma $-approximately differentiable at $ \mathcal{H}^n $ a.e. $ a \in \Sigma $ with a symmetric approximate differential $ \operatorname{ap} D \nu(a) $ by lemma 5.2. We denote by

\begin{equation*} {\chi}_{\Sigma,1}(a) \leq \ldots \leq {\chi}_{\Sigma, n}(a) \end{equation*}

the eigenvalues of $ \operatorname{ap} D \nu(a) $ and we define (cf. definition 2.12)

\begin{equation*} E = \{(x,u) \in \operatorname{nor}(C) : \kappa_{C,n}(x,u) \lt \infty\}. \end{equation*}

Lemma A.2. If $ A \subseteq \mathbf{R}^{n+1} $ is a Borel set, then

\begin{equation*} \mathcal{H}^n(E \cap (A \times \mathbf{S}^n)) \geq \int_{\Sigma \cap A} \prod_{\ell=1}^n\sqrt{1 + {\chi}_{\Sigma, \ell}(x)^2}\, d\mathcal{H}^n(x). \end{equation*}

Proof. Let $ \{\Sigma_i\}_{i \geq 1} $ be a sequence of C 2-hypersurfaces such that $ \mathcal{H}^{n}(\Sigma \setminus \bigcup_{i=1}^\infty \Sigma_i) =0 $. Employing lemma A.1 we can find a disjointed sequence of Borel subsets $ \{R_i\}_{i \geq 1} $ of $ \Sigma_i \cap \Sigma $ such that

\begin{equation*} \mathcal{H}^n\big( \Sigma \setminus {\textstyle \bigcup_{i=1}^\infty R_i}\big) =0 \quad \text{and} \quad \operatorname{nor}(C) \cap (R_i \times \mathbf{S}^n) \subseteq \operatorname{nor}(\Sigma_i) \end{equation*}

for every $ i \geq 1 $. It follows from [Reference Federer10, 2.10.19(4)] that

(A.1)\begin{equation} \operatorname{Tan}^n\big(\mathcal{H}^n \operatorname{\llcorner} (\operatorname{nor}(C) \cap (R_i \times \mathbf{S}^n)), (x,u)\big) = \operatorname{Tan}(\operatorname{nor}(\Sigma_i), (x,u)) \end{equation}

for $ \mathcal{H}^n $ a.e. $ (x,u) \in \operatorname{nor}(C) \cap (R_i \times \mathbf{S}^n) $ (recall that $ \operatorname{nor}(\Sigma_i) \cap (\Sigma_i \times \mathbf{S}^n) $ is an n-dimensional submanifold of $ \mathbf{R}^{n+1} \times \mathbf{S}^n $ of class 1). Since $ \pi_0 \big(\operatorname{Tan}(\operatorname{nor}(\Sigma_i), (x,u))\big) = \operatorname{Tan}(\Sigma_i, x) $ is an n-dimensional linear space for every $ (x,u) \in \operatorname{nor}(\Sigma_i) \cap (\Sigma_i \times \mathbf{S}^n) $, we deduce from (A.1) and [Reference Hug and Santilli14, Lemma 3.9] that

\begin{equation*} \kappa_{C,n}(a,u) \lt \infty \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ (a,u) \in \bigcup_{i =1}^n \big[\operatorname{nor}(C) \cap (R_i \times \mathbf{S}^n)\big]. \end{equation*}

For each $ i \geq 1 $ let $ {\chi}_{\Sigma_i, 1} \leq \ldots \leq {\chi}_{\Sigma_i, n} $ be the principal curvatures of $ \Sigma_i $, and we notice that

\begin{equation*} J_n^{\operatorname{nor}(\Sigma_i)} \pi_0(x,u) = \prod_{\ell=1}^n \frac{1}{\sqrt{1 + {\chi}_{\Sigma_i, \ell}(x)^2}} \end{equation*}

for $ (x,u) \in \operatorname{nor}(\Sigma_i) \cap (\Sigma_i \times \mathbf{S}^n) $. Applying area formula we can estimate

\begin{align*} \mathcal{H}^n(E \cap (A \times & \mathbf{S}^n)) \\ &\geq \sum_{i=1}^\infty \mathcal{H}^n(\operatorname{nor}(C) \cap ((A \cap R_i) \times \mathbf{S}^n))\\ & = \sum_{i=1}^\infty \int_{\operatorname{nor}(C) \cap ((A \cap R_i) \times \mathbf{S}^n)} J_n^{\operatorname{nor}(\Sigma_i)} \pi_0(x,u)\\ & \qquad\prod_{\ell=1}^n \sqrt{1 + {\chi}_{\Sigma_i, \ell}(x)^2}\, d\mathcal{H}^n(x,u)\\ & \geq \sum_{i=1}^\infty \int_{A \cap R_i}\prod_{\ell=1}^n \sqrt{1 + {\chi}_{\Sigma_i, \ell}(x)^2}\, d\mathcal{H}^n(x). \end{align*}

From the proof of lemma 5.2 we obtain that if $ i \geq 1 $ then

\begin{equation*} \prod_{\ell=1}^n \sqrt{1 + {\chi}_{\Sigma_i, \ell}(x)^2} = \prod_{\ell=1}^n \sqrt{1 + {\chi}_{\Sigma, \ell}(x)^2} \quad \text{for}\ \mathcal{H}^n\ \text{a.e.}\ x \in \Sigma \cap \Sigma_i .\end{equation*}

Henceforth, we conclude

\begin{equation*} \mathcal{H}^n(E \cap (A \times \mathbf{S}^n)) \geq \int_{A \cap \Sigma}\prod_{\ell=1}^n \sqrt{1 + {\chi}_{\Sigma, \ell}(x)^2}\, d\mathcal{H}^n(x). \end{equation*}

Lemma A.3. There exist a smooth two-dimensional submanifold $ M \subseteq \mathbf{R}^3 $ with bounded mean curvature such that $ \mathcal{H}^2 \operatorname{\llcorner} \overline{M} $ is a Radon measure over R3, and a set $ P \subseteq \mathbf{R}^3 \times \mathbf{S}^2 $ such that $ \mathcal{H}^2(P) \gt 0 $ and

\begin{equation*} \mathcal{H}^{2}\big(\operatorname{nor}(\overline{M}) \cap \{(x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n : | x-b| \lt r,\; | u - \upsilon| \lt r\}\big) = \infty \end{equation*}

for every $(b, \upsilon) \in P $ and for every r > 0.

Proof. By [Reference Kolasinski and Menne19, Example 10.8 and Remark 10.10] (see also [Reference Brakke18, 6.1]) there exists a smooth two-dimensional submanifold $ M \subseteq \mathbf{R}^3 $ such that $ \mathcal{H}^2 \operatorname{\llcorner} \overline{M} $ is a Radon measure, and if $ {\chi}_1 \leq {\chi}_2 $ are the principal curvatures of M with respect to a unit-normal vector field $ \eta : M \rightarrow \mathbf{S}^n $ then

\begin{equation*} | {\chi}_1(a) + {\chi}_2(a) | \leq 1 \quad \text{for every}\ a \in M \end{equation*}

and there exists a Borel set $ B \subseteq \overline{M} \setminus M $ such that

\begin{equation*} \int_{M \cap B(b,r)} \big({\chi}_1^2 + {\chi}_2^2\big)^{q/2}\, d\mathcal{H}^2 = \infty \quad \text{for every}\ 1 \lt q \lt \infty , b \in B\ \text{and}\ r \gt 0 . \end{equation*}

Henceforth, for every $ b \in B $ and r > 0,

\begin{equation*} +\infty = \int_{M \cap B(b,r)} \big({\chi}_1^2 + {\chi}_2^2\big)\, d\mathcal{H}^2 \leq \mathcal{H}^2(M \cap B(b,r)) - 2 \int_{M \cap B(b,r)}{\chi}_1\, {\chi}_2\, d\mathcal{H}^2 \end{equation*}

and

\begin{equation*} \int_{M \cap B(b,r)}{\chi}_1\, {\chi}_2\, d\mathcal{H}^2 = - \infty. \end{equation*}

By lemma A.2 we infer that

\begin{equation*} \mathcal{H}^2 \big(\operatorname{nor}(\overline{M}) \cap (B(b,r) \times \mathbf{S}^n)\big) \geq \int_{M\cap B(b,r)} \prod_{\ell=1}^2 (1 + {\chi}_\ell(x)^2)^{1/2}\, d\mathcal{H}^n(x) = \infty \end{equation*}

for every r > 0 and $ b \in B $.

Now the compactness of Sn guarantees that for each $ b \in B $ there exists $ \upsilon(b) \in \mathbf{S}^n $ such that

\begin{equation*} \mathcal{H}^{2}\big(\operatorname{nor}(\overline{M}) \cap \{(x,u) \in \mathbf{R}^{n+1} \times \mathbf{S}^n : | x-b| \lt r,\; | u - \upsilon(b)| \lt r\}\big) = \infty \end{equation*}

for each r > 0. Henceforth, setting $ P = \{(b, \upsilon(b)) : b \in B\} $ we have that $ \mathcal{H}^2(P) \gt 0 $ and the proof is complete.

Remark A.4. In particular, $ \operatorname{nor}(\overline{M}) $ is a Legendrian rectifiable set by lemma 2.11, but it cannot be the carrier an integer-multiplicity rectifiable n-current of $ \mathbf{R}^3 \times \mathbf{S}^2 $.

Footnotes

1 The unit normal bundle of a closed set C in [Reference Santilli40] is denoted with N(C).

References

Aleksandrov, A. D.. Uniqueness theorems for surfaces in the large. V. Vestnik Leningrad. Univ 13 (1958), 58.Google Scholar
Alexandrov, A. D.. A characteristic property of spheres. Ann. Mat. Pura Appl. (4) 58 (1962), 303315.10.1007/BF02413056CrossRefGoogle Scholar
Ambrosio, L., Fusco, N. and Pallara, D.. Functions of Bounded Variation and Free Discontinuity problems. (Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000).10.1093/oso/9780198502456.001.0001CrossRefGoogle Scholar
Busemann, H. and Feller, W.. Krümmungseigenschaften Konvexer Flächen. Acta Math. 66 (1936), 147.10.1007/BF02546515CrossRefGoogle Scholar
Caffarelli, L., Crandall, M. G., Kocan, M. and Swiech, A.. On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49 (1996), 365397.10.1002/(SICI)1097-0312(199604)49:4<365::AID-CPA3>3.0.CO;2-A3.0.CO;2-A>CrossRefGoogle Scholar
Calderón, A. -P. and Zygmund, A.. Local properties of solutions of elliptic partial differential equations. Studia Math. 20 (1961), 171225.10.4064/sm-20-2-181-225CrossRefGoogle Scholar
De Rosa, A., Kolasinski, S. and Santilli, M.. Uniqueness of critical points of the anisotropic isoperimetric problem for finite perimeter sets. Arch. Ration. Mech. Anal. 238 (2020), 11571198.10.1007/s00205-020-01562-yCrossRefGoogle Scholar
Delgadino, M. G. and Maggi, F.. Alexandrov’s theorem revisited. Anal. PDE. 12 (2019), 16131642.10.2140/apde.2019.12.1613CrossRefGoogle Scholar
Federer, H.. Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418491.10.1090/S0002-9947-1959-0110078-1CrossRefGoogle Scholar
Federer, H.. Geometric Measure theory. Die Grundlehren der Mathematischen Wissenschaften, Band 153. (Inc., New York, New York, 1969).Google Scholar
Gilbarg, D. and Trudinger, N. S.. Elliptic partial differential equations of second order. Classics in Mathematics., (Springer-Verlag, Berlin, 2001)Reprint of the 1998 edition.Google Scholar
Heintze, E. and Karcher, H.. A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. ÉCole Norm. Sup. (4). 11 (1978), 451470.10.24033/asens.1354CrossRefGoogle Scholar
Hsiung, C. -C.. Some integral formulas for closed hypersurfaces. Math. Scand. 2 (1954), 286294.10.7146/math.scand.a-10415CrossRefGoogle Scholar
Hug, D. and Santilli, M.. Curvature measures and soap bubbles beyond convexity. Adv. Math. 411 (2022), , .10.1016/j.aim.2022.108802CrossRefGoogle Scholar
Fu, J. H. G.. Monge-Ampère functions. I II. Indiana Univ. Math. J. 38 (1989), .Google Scholar
Fu, J. H. G.. Some remarks on Legendrian rectifiable currents. Manuscripta Math. 97 (1998), 175187.10.1007/s002290050095CrossRefGoogle Scholar
Fu, J. H. G.. An extension of Alexandrov’s theorem on second derivatives of convex functions. Adv. Math. 228 (2011), 22582267.10.1016/j.aim.2011.07.002CrossRefGoogle Scholar
Brakke, K. A.. The motion of a surface by its mean curvature. Mathematical Notes., Vol.20, (Princeton University Press, Princeton, NJ, 1978) of.Google Scholar
Kolasinski, S. and Menne, U.. Decay rates for the quadratic and super-quadratic tilt-excess of integral varifolds. NoDEA Nonlinear Differential Equations Appl. 24 (2017), 17, 56.10.1007/s00030-017-0436-zCrossRefGoogle Scholar
Kolasinski, S. and Santilli, M.. Regularity of the distance function from arbitrary closed sets. Math. Ann. 386 (2023), 735777.10.1007/s00208-022-02407-7CrossRefGoogle Scholar
Malý, J.. Absolutely continuous functions of several variables. J. Math. Anal. Appl. 231 (1999), 492508.10.1006/jmaa.1998.6246CrossRefGoogle Scholar
Mantegazza, C.. On C 2 umbilical hypersurfaces. Proc. Amer. Math. Soc. 150 (2022), 17451748.10.1090/proc/15804CrossRefGoogle Scholar
Marcus, M. and Mizel, V. J.. Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems. Bull. Amer. Math. Soc. 79 (1973), 790795.10.1090/S0002-9904-1973-13319-1CrossRefGoogle Scholar
Menne, U.. A sharp lower bound on the mean curvature integral with critical power for integral varifolds. (2024).Google Scholar
Menne, U. and Santilli, M.. A geometric second-order-rectifiable stratification for closed subsets of Euclidean space. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 19 (2019), 11851198.Google Scholar
Montiel, S. and Ros, A.. Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. In Differential geometry, volume 52 of Pitman Monogr. Surveys Pure Appl. Math., pages. 279296. (Longman Sci. Tech., Harlow, 1991).Google Scholar
Trudinger, N. S.. On the twice differentiability of viscosity solutions of nonlinear elliptic equations. Bull. Austral. Math. Soc. 39 (1989), 443447.10.1017/S0004972700003361CrossRefGoogle Scholar
Pauly, A.. Flächen mit lauter Nabelpunkten. Elem. Math. 63 (2008), 141144.10.4171/em/100CrossRefGoogle Scholar
Rataj, J. and Zähle, M.. Legendrian cycles and curvatures. J. Geom. Anal. 25 (2015), 21332147.10.1007/s12220-014-9506-1CrossRefGoogle Scholar
Rataj, J. and Zähle, M.. Curvature measures of singular sets. Springer Monographs in Mathematics., (Springer, Cham, 2019).Google Scholar
Reilly, R. C.. Variational properties of mean curvatures. In Proceedings of the Thirteenth Biennial Seminar of the Canadian Mathematical Congress (Dalhousie Univ. Halifax, N.S. 1971). 2 (1972), 102114.Google Scholar
Jerrard, R. L.. Some rigidity results related to Monge-Ampère functions. Canad. J. Math. 62 (2010), 320354.10.4153/CJM-2010-019-8CrossRefGoogle Scholar
Kohn, R. V.. An example concerning approximate differentiation. Indiana Univ. Math. J. 26 (1977), 393397.10.1512/iumj.1977.26.26030CrossRefGoogle Scholar
Rockafellar, R. T. and Wets, R. J. -B.. Variational analysis, volume 317 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.Google Scholar
Ros, A.. Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoamericana. 3 (1987), 447453.10.4171/rmi/58CrossRefGoogle Scholar
Ros, A.. Compact hypersurfaces with constant scalar curvature and a congruence theorem. J. Differential Geom. 27 (1988), 215223.10.4310/jdg/1214441779CrossRefGoogle Scholar
Roskovec, T.. Construction of $W^{2,n}(\Omega)$ function with gradient violating Lusin (N) condition. Math. Nachr. 289 (2016), 11001111.10.1002/mana.201500014CrossRefGoogle Scholar
Salani, P.. Equazioni Hessiane e k-convessità. Tesi di Dottorato in Matematica. (Università di Firenze, IX ciclo: 1993–1997.Google Scholar
Santilli, M.. Rectifiability and approximate differentiability of higher order for sets. Indiana Univ. Math. J. 68 (2019), 10131046.10.1512/iumj.2019.68.7645CrossRefGoogle Scholar
Santilli, M.. Fine properties of the curvature of arbitrary closed sets. Ann. Mat. Pura Appl. (4). 199 (2020), 14311456.10.1007/s10231-019-00926-wCrossRefGoogle Scholar
Santilli, M.. Second order rectifiability of varifolds of bounded mean curvature. Calc. Var. Partial Differential Equations. 60 (2021), .10.1007/s00526-021-01922-wCrossRefGoogle Scholar
Souam, R. and Toubiana, E.. On the classification and regularity of umbilic surfaces in homogeneous 3-manifolds. XIV School on Differential Geometry (Portuguese). 30 (2006), 201215.Google Scholar
Toro, T.. Surfaces with generalized second fundamental form in L 2 are Lipschitz manifolds. J. Differential Geom. 39 (1994), 65101.10.4310/jdg/1214454677CrossRefGoogle Scholar
Valentini, Paolo. Legendrian cycles and Alexandrov sphere theorems for $W^{2,n}$-hypersurfaces. Tesi di Dottorato in Matematica. https://hdl.handle.net/11697/262249 (Accessed 03 Apr 2025).Google Scholar
Allard, W. K.. On the first variation of a varifold. Ann. of Math. (2) 95 (1972), 417491.10.2307/1970868CrossRefGoogle Scholar
Ziemer, W. P.. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.Google Scholar
Zähle, M.. Integral and current representation of Federer’s curvature measures. Arch. Math. (Basel). 46 (1986), 557567.10.1007/BF01195026CrossRefGoogle Scholar