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1. Introduction

1.1. Background and motivation

It is important and natural to understand if classical results of smooth differen-
tial geometry still hold if one weakens the regularity hypothesis. Since most of
the classical differential-geometric techniques rely on some smoothness assump-
tion, such a question often calls for substantial generalizations of the existing
methods.

Our starting point in this paper is the following general version of the sphere
theorem by Alexandrov [1].

Theorem (Alexandrov). A bounded and connected C 2-domain Ω ⊆ Rn+1 must
be a round ball, provided there exist a C 1-function ϕ : Rn → R and λ ∈ R such
that

ϕ(χΩ,1(p), . . . , χΩ,n(p)) = λ
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2 M. Santilli and P. Valentini

and

∂ϕ

∂ti
(χΩ,1(p), . . . , χΩ,n(p)) > 0 for i = 1, . . . , n, (1.1)

for every p ∈ ∂Ω. Here χΩ,1 ≤ . . . ≤ χΩ,n are the principal curvatures of ∂Ω.
The simplest case of this result is the famous rigidity result for hypersurfaces

with constant mean curvature. More generally, choosing ϕ = σk, where σk is
the k -th elementary symmetric function (see definition 5.11), one can deduce
(see [36, Appendix]) that if Ω ⊆ Rn+1 is a bounded C 2-domain such that
HΩ,k = σk(χΩ,1, . . . , χΩ,n) is constant for some k, then Ω is a round ball. This
result was proved by Alexandrov using the moving plane method. A completely
different approach to treat the special case ϕ = σk and based on integral identities
that was found by Ros in [35] and Montiel–Ros [26].

It is natural to ask about generalization of the sphere theorem beyond the clas-
sical smooth regime. This problem was addressed by Alexandrov in [2], where he
generalized the sphere theorem to bounded domains whose boundary can be locally
represented as graph of C 1-functions with second-order distributional derivatives
in Ln, and under the uniform ellipticity condition

0 < µ1 ≤ ∂ϕ

∂ti
(χΩ,1(p), . . . , χΩ,n(p)) ≤ µ2 <∞ for i = 1, . . . , n, (1.2)

for Hn a.e. p ∈ ∂Ω. Here χΩ,1 ≤ . . . ≤ χΩ,n are the weak principal curvatures of
∂Ω. Obviously, (1.2) reduces to (1.1) for C 2-domains. The proof of this result is
based on the generalization of the moving plane method by means of maximum
principles for W 2,n-solutions of uniformly elliptic partial differential equations.
Both the hypothesis of C 1-regularity and the uniform ellipticity condition (1.2)
are important for the applicability of this method. On the other hand, it is natural
to ask if these hypotheses are convenient conditions rather than necessary restric-
tions. Additionally, arbitraryW 2,n-functions exhibit very different behaviours than
C 1-functions. For instance, T. Toro in [43] constructs a W 2,n-function with a
(countable) dense subset of singular points, and J. Fu in [17] points out the existence
of W 2,n-functions on Rn whose gradient has a dense graph in Rn ×Rn.

With these motivations in mind, in this paper, we generalize Alexandrov sphere
theorem to arbitrary W 2,n-domains (i.e. open sets which are locally subgraphs
of W 2,n-functions) when ϕ is a symmetric function of the weak principal curva-
tures. Moreover, we prove our result under a more general hypothesis than uniform
ellipticity, namely the degenerate ellipticity condition (1.3), cf. theorem C. Instead
of using a moving plane method, we extend the Montiel–Ros integral-geometric
approach to prove our result. In recent years, Montiel–Ros argument has been
generalized to some classes of non-smooth geometric sets, namely sets of finite
perimeter with bounded distributional mean curvature (see [8] and [7]) and sets
of positive reach (cf. [14]). On the other hand, the aforementioned examples show
that W 2,n-domains exhibit some very different behaviour than the sets treated in
[8], [7], or in [14]. As explained below, this requires a substantially novel approach.
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Alexandrov sphere theorems 3

1.2. Legendrian cycles and sphere theorem

Here we discuss the generalization of the Montiel–Ros method (see [26]) to W 2,n-
domains. In the smooth setting, this method is based on a clever combination of
the Heintze–Karcher inequality (see [12] and [26]) with the variational formulae for
the higher-order mean curvature integrals of a C 2-domain (cf. [13] and [31]). As
noted by Fu (cf. [16]), the variational formulae are strictly related to the structure
of Legendrian cycle carried by the unit-normal bundle of a smooth submanifold. We
recall that an integer multiplicity locally rectifiable n-current T of Rn+1 ×Rn+1

with compact support in Rn+1 × Sn is called a Legendrian cycle of Rn+1 if and
only if ∂T = 0 and T xα = 0, where α is the contact form in Rn+1×Rn+1 (see §2).
Indeed, it is a simple exercise to prove that the unit-normal bundle of a C 2-domain
carries a natural structure of Legendrian cycle. It is also well known that if f is a
W 2,n-function on an open subset U of Rn+1 then there exists an integral current
D(f) (also denoted by [df ]) of U × Rn with zero distributional boundary (i.e. an
integral cycle), which serves as a substitute for the graph of the differential of f
(see [15], [32, (4.1) p. 332], and [17]). This current is called differential cycle of f.
The construction of this integral cycle can be naturally extended to construct a
Legendrian cycle associated with the graph of f. However, this information alone
is not sufficient to extend the Montiel–Ros method, as such extension seems to
require a crucial geometric property for the carrier W of this Legendrian cycle:
namely that the segments a+ tu with t ≥ 0, at least for ‘many’ points (a, u) ∈W ,
must be distance-minimizing segments near 0. This observation leads us to consider
the proximal unit-normal bundle, which is defined for an arbitrary set C ⊆ Rn+1

as

nor(C) = {(x, u) ∈ C × Sn : dist(x+ su,C) = s for some s > 0}.

It is always true that nor(C) is a Legendrian rectifiable set of Rn+1 × Sn (see
definition 2.1), namely it can be Hn almost everywhere covered by a countable
union of n-dimensional C 1-submanifold of Rn+1 × Sn and the contact form α
vanishes on the approximate tangent plane of nor(C) at Hn almost all points; cf.
lemma 2.11. On the other hand, it is not always true that Hn x nor(C) is a Radon
measure over Rn+1 × Sn (for instance even when C coincides with the closure of
a smooth submanifold with bounded mean curvature, cf. lemma A.3), henceforth,
nor(C) cannot always carry an integer-multiplicity rectifiable current.

Our first and central result asserts that the proximal unit normal bundle of
a W 2,n-domain carries a natural structure of Legendrian cycle. More precisely,
denoting by π0 : Rn+1 × Rn+1 → Rn+1 the projection onto the first factor, cf.
(2.2), and by E

′
a volume form of Rn+1, cf. (2.5), we prove the following result.

Theorem A (cf. theorem 3.9 and theorem 5.7). If Ω ⊆ Rn+1 is a bounded W 2,n-
domain then Hn(nor(Ω)) <∞ and there exists a unique n-dimensional Legendrian
cycle T such that

T = (Hn xnor(Ω)) ∧ η,

where η is a Hn x nor(Ω) measurable n-vectorfield such that

|η(x, u)| = 1, η(x, u) is simple,
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Tann(Hn x nor(Ω), (x, u)) is associated with η(x, u)

and

〈
[∧

nπ0
]
(η(x, u)) ∧ u,E′〉 > 0

for Hn a.e. (x, u) ∈ nor(Ω). We write T = NΩ.

A simple functional-analytic reformulation of theorem A, which can be proved
along the same lines as theorem 3.9, states what follows.

Theorem B. Suppose f ∈ W 2,n(U). Then D(f) is a unit-density integral cycle
carried over {(x,∇f(x)) : x ∈ S(f)}, where S(f) is the set of pointwise twice-
differentiabily points of f (cf. definition 2.15), and ∇f is the pointwise gradient
of f .

In this direction, we recall that Ln(U \ S(f)) = 0 by lemma 2.16, and the
subtlety of theorem B becomes more transparent if we observe that S(f) cannot be
replaced by the set of pointwise differentiability points Diff(f) of f : indeed, there
exists f ∈ C1

(
[−1, 1]n

)
∩W 2,n

(
(−1, 1)n

)
such that

[−1, 1]n ⊆ ∇f([−1, 1]× {0}n−1),

cf. [37], and denoting by ∇f the graph map of the gradient of f, we use lemma 3.5
to conclude that Hn

(
∇f(U) \ ∇f(S(f))

)
> 0.

Combining theorem A with the variational formulae for Legendrian cycles in [16],
we can extend Reilly variational formulae (see [31]) to W 2,n-domains, whence we
deduce the Minkowski–Hsiung formulae in our setting (see theorems 5.15 and 5.17).
Moreover, the Heintze–Karcher inequality for W 2,n-domains (see theorem 6.1) can
be deduced from the general inequality [14, Theorem 3.20] employing some of the
structural properties of the proximal unit-normal bundle (see theorem 5.7(2)–(3)),
that already play a role in theorem A.

Combining these results we can eventually prove our generalization of Alexandrov
sphere theorem.

Theorem C (cf. theorem 6.2 and remark 6.3). A bounded and connected W 2,n-
domain Ω ⊆ Rn+1 must be a round ball, provided there exist k ∈ {2, . . . , n} and
λ ∈ R such that

σk(χΩ,1(p), . . . , χΩ,n(p)) = λ

and
∂σk
∂ti

(χΩ,1(p), . . . , χΩ,n(p)) ≥ 0 for i = 1, . . . , n (1.3)

for Hn a.e. p ∈ ∂Ω.

If k =1 the result would reduce to the smooth Alexandrov’s sphere theorem for
constant mean curvature hypersurfaces, since the condition HΩ,1(z) = λ for Hn

a.e. z ∈ ∂Ω implies that ∂Ω is smooth by Allard’s regularity theorem (notice that
by theorem 5.15 the function HΩ,1 is the generalized mean curvature of ∂Ω in the
sense of varifolds, see [45]). No analogous regularity result is available when k ≥ 2.
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1.3. The support of Legendrian cycles

Theorem A finds natural application in other problems, beyond the rigidity ques-
tions that we have considered so far. In §4, we employ it to answer a question
implicit in [29]. In [29, Remark 2.3], the authors asked if there exist n-dimensional
Legendrian cycles in Rn+1 whose support is not locally Hn-rectifiable or even has
positive Hn+1-measure. Combining theorem A with an observation by J. Fu in
[17] about the existence of W 2,n-functions whose differential has a graph dense in
Rn ×Rn, we prove the following result.

Theorem D. There exist n-dimensional Legendrian cycles of Rn+1 whose support
has positive H2n-measure.

1.4. The Nabelpunktsatz

In the final section of this paper, we study the problem of extending the classi-
cal umbilicality theorem (or Nabelpunktsatz). The classical proof of this theorem
works for hypersurfaces that are at least C 3-regular. A proof for C 2-hypersurfaces
is given in [42] (see also [28] and [22]). Considering more general hypersurfaces
with curvatures defined only almost everywhere, the question about the valid-
ity of the Nabelpunktsatz goes back to the classical paper of Busemann and
Feller [4], where they also pointed out the existence of non-spherical convex C 1-
hypersurfaces which are umbilical at almost every point; see also remark 7.8. In [7],
the Nabelpunksatz is extended to C1,1-hypersurfaces. Here we obtain the following
far-reaching generalization of this result.

Theorem E (cf. theorem 7.6). The Nabelpunktsatz holds for almost everywhere
umbilicalW 2,1-graphs, provided the Lusin condition (N) holds for the graph function
(cf. definition 7.5).

The Lusin condition (N) is necessary in order to guarantee the existence of weak
curvatures on the graphs (i.e. second-order rectifiability) and it is automatically
verified for graphs of W 2,p-functions, with p > n

2 ; cf. remark 7.7.

2. Notation and background

Given a set of parameters {p1, p2, . . . pn}, we denote a generic positive constant
depending only p1, . . . , pn by c(p1, . . . , pn).

If f : S → T is a function we define

f : S → S × T, f(x) = (x, f(x)). (2.1)

The characteristic function of a set X is 1X and the Grassmannian ofm-dimensional
subspaces of Rk is G(k,m). Moreover, we often use the following projection maps

π0 : Rn+1 ×Rn+1 → Rn+1 π1 : Rn+1 ×Rn+1 → Rn+1 (2.2)

defined as π0(x, u) = x and π1(x, u) = u.
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In this paper, we use the symbol • to denote scalar products. In particular, we
fix a scalar product • on Rn+1,

an orthonormal basis e1, . . . , en+1 of Rn+1 and its dual basis e′1, . . . , e
′
n+1. (2.3)

For a subset S of an Euclidean space, S is the closure of S. We use the symbols D
and ∇ for the classical differential and the gradient. If f : U → R is a continuous
function defined on an open set U, we denote the set of x ∈ U , where f is pointwise
differentiable by

Diff(f).

2.1. Basic notions from geometric measure theory

In this paper, we use standard notation from geometric measure theory, for which
we refer to [10]. For the reader’s convenience, we recall some basic notions here.

For a subset X ⊆ Rm and a positive integer µ, we define Tanµ(Hµ xX, a) to be
the set of all v ∈ Rm such that

Θ∗µ(Hµ xX ∩ {x : |r(x− a)− v| < ε for some r > 0}, a
)
> 0

for every ε> 0. This is a cone with vertex at 0 and we set

Norµ(Hµ xX, a) = {v ∈ Rm : v • u ≤ 0 for u ∈ Tanµ(Hµ xX, a)}.

Suppose X ⊆ Rm and f maps a subset of Rm into Rk . Given a positive integer
µ and a ∈ Rm, we say that f is Hµ xX approximately differentiable at a (cf. [10,
3.2.16]) if and only if there exists a map g : Rm → Rk pointwise differentiable at
a such that

Θµ(Hµ xX ∩ {b : f(b) 6= g(b)}, a) = 0.

In this case, (see [10, 3.2.16]) f determines the restriction of Dg(a) on the
approximate tangent cone Tanµ(Hµ xX, a) and we define

apDf(a) = Dg(a)|Tanµ(Hµ xX, a).

Suppose X ⊆ Rm and µ is a positive integer. We say that X is countably Hµ-
rectifiable if there exist countably many µ-dimensional C 1-submanifolds Σi of Rm

such that

Hµ
(
X \

∞⋃
i=1

Σi

)
= 0.

It is well known that if X is countably Hµ-rectifiable with Hµ(X) < ∞, then
Tanµ(Hµ xX, a) is a µ-dimensional plane at Hµ a.e. a ∈ X, and every Lipschitz
function f : X → Rk has an Hµ xX-approximate differential apDf(a) :
Tanµ(Hµ xX, a) → Rk at Hµ a.e. a ∈ X. At such points a we define for
h ∈ {1, . . . , k} the h-dimensional approximate Jabobian of f
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JX
h f(a) = sup

{∣∣[∧h apDf(a)](ξ)
∣∣ : ξ ∈ ∧h Tan

µ(Hµ xX, a), |ξ| = 1
}

(see (2.4) for the definition of
∧

h apDf(a)). The approximate Jacobian naturally
appears in area and coarea formula for f ; see [10, 3.2.20, 3.2.22].

2.2. Differential forms and currents

Let V be a vector space. We denote by v1 ∧ · · · ∧ vm the simple m-vector obtained
by the exterior multiplication of vectors v1, . . . , vm in V and

∧
m V is the vector

space generated by all simple m vectors of V. Each linear map f : V → V ′ can be
uniquely extended to a linear map

∧
mf :

∧
mV →

∧
mV

′ (2.4)

such that
∧

mf(v1 ∧ · · · ∧ vm) = f(v1) ∧ · · · ∧ f(vm) for every v1, . . . , vm ∈ V (cf.
[10, 1.3.1–1.3.3]).

The vector space of all alternating m-linear functions f : V m → R (i.e.
f(v1, . . . , vm) = 0 whenever v1, . . . vm ∈ V and vi = vj for some i ≠ j ) is denoted by∧m

V . There is a natural isomorphism between
∧m

V and the space of all linear
R-valued maps on

∧
m V (cf. [10, 1.4.1–1.4.3]). It is often convenient to use the

following customary notation (see [10]):

〈ξ, h〉 = h(ξ) whenever ξ ∈
∧

mV and h ∈
∧m

V.

Using the notation introduced in (2.3), we define

E = e1 ∧ · · · ∧ en+1 ∈
∧

n+1R
n+1 and E′ = e′1 ∧ · · · ∧ e′n+1 ∈

∧n+1
Rn+1. (2.5)

If V is an inner product space, then both
∧

m V and
∧m

V can be endowed with
natural scalar products, whose associated norms are denoted by | · |; see [10, 1.7.5].

Suppose U ⊆ Rp is open and k ≥ 0. A k -form is a smooth map φ : U →
∧k

Rp

(if k =0 we set
∧0

Rp = R). Following [10, 4.1.1, 4.1.7], we denote by Ek(U) the
space of all smooth k -forms on U and we denote by Dk(U) the space of all k -forms
with compact support in U. If φ ∈ Ek(U), we denote by dφ the exterior derivative
of φ (cf. [10, 4.1.6]). Moreover, if f is a smooth function mapping U into Rq and
ψ is a k -form defined on an open subset V of Rq with f(U) ⊆ V , then we define
the k -form f#ψ on U by the formula

〈v1 ∧ · · · ∧ vk, f#ψ(x)〉 = 〈
∧

kDf(x)(v1 ∧ · · · ∧ vk), ψ(f(x))〉

for x ∈ U and v1, . . . , vk ∈ Rp. We refer to [10, 4.1.6] for the basic properties of
f#. Functions mapping a subset of U into

∧
k(R

p) are called k-vectorfields.
Suppose U ⊆ Rp is open and k ≥ 0. A k -current is a continuous R-valued

linear map T on Dk(U), with respect to the standard topology (cf. [10, 4.1.1]) and
we denote the space of all k -currents on U by Dk(U). We say that a sequence
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T` ∈ Dk(U) weakly converges to T ∈ Dk(U) if and only if

T`(φ) → T (φ) for all φ ∈ Dk(U).

If T is a k -current on U, then the boundary of T is the (k−1)-current ∂T ∈ Dk−1(U)
given by

∂T (φ) = T (dφ) for all φ ∈ Dk(U),

while the support of T is defined as

spt(T ) = U \
⋃{

V : V ⊆ U open and T (φ) = 0 for all φ ∈ Dk(V )}.

If T ∈ Dk(U) and spt(T ) is a compact subset of U, then T can be uniquely extended
to a continuous linear map on Ek(U). If ψ ∈ Eh(U), T ∈ Dk(U) and h ≤ k we set

(T xψ)(φ) = T (ψ ∧ φ) for all φ ∈ Dk−h(U).

If T ∈ Dk(U), V is an open subset of Rq and f : U → V is a smooth map such that
f |spt(T ) is proper, then noting that sptf#φ ⊆ f−1(sptφ) and f−1(sptφ)∩ sptT is
a compact subset of U for each φ ∈ Dk(V ), we define f#T ∈ Dk(V ) by the formula

f#T (φ) = T
[
γ ∧ f#φ

]
, (2.6)

whenever φ ∈ Dk(V ) and γ ∈ D0(U) with f−1(sptφ) ∩ sptT ⊆ interior [γ−1({1})].
If spt(T ) is a compact subset of U then f#T (φ) = T (f#φ) whenever φ ∈ Ek(V ).
We refer to [10, 4.1.7] for the basic properties of the map f#.

We say that a k -current T ∈ Dk(U) is a integer multiplicity locally rectifiable
k-current of U provided

T (φ) =

∫
M

〈η(x), φ(x)〉 dHk(x) for all φ ∈ Dk(U), (2.7)

where M ⊆ U is Hk-measurable and countably Hk-rectifiable and η is an Hk xM -
measurable k -vectorfield such that:

(1)
∫
K∩M

|η| dHk <∞ for every compact subset K of U,

(2) η(x) is a simple and |η(x)| is a positive integer for Hk a.e. x ∈M ,
(3) Tank(Hk xM,x) is associated with η(x) for Hk a.e. x ∈M .

We refer to M as carrier of T.

2.3. Legendrian currents

Here we introduce the central notion of Legendrian cycle and we collect some
fundamental facts.

Let α ∈ E1(Rn+1 ×Rn+1) be the contact 1-form of Rn+1, which is defined by
the formula

〈(y, v), α(x, u)〉 = y • u for (x, u), (y, v) ∈ Rn+1.

Definition 2.1. LetM ⊆ Rn+1×Sn be a countably Hn rectifiable set. We say that
M is a Legendrian rectifiable set if and only if for every Q ⊆M with Hn(Q) <∞
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we have that

α(x, u)|Tann(Hn xQ, (x, u)) = 0

for Hn a.e. (x, u) ∈ Q.

Remark 2.2. In relation with definition 2.1, we recall that Tann(Hn xQ, (x, u)) is
an n-dimensional plane for Hn a.e. (x, u) ∈ Q.

Definition 2.3. Let W ⊆ Rn+1 be an open set and let T be an integer-multiplicity
locally rectifiable n-current of W ×Rn+1 with spt(T ) ⊆W × Sn.

We say that T is Legendrian cycle of W if T xα = 0 and ∂T = 0.

Remark 2.4. If T is a Legendrian cycle and M is a carrier of T, then M is a
Legendrian rectifiable set (with Hn(K ∩M) < ∞ for every K ⊆ Rn+1 × Rn+1

compact).

Lemma 2.5. Suppose W1, . . . ,Wm ⊆ Rn+1 are bounded open sets and T ∈
Dn(R

n+1 × Rn+1) such that T x(Wi × Rn+1) is a Legendrian cycle of Wi for
every i = 1, . . . ,m and spt(T ) is a compact subset of

⋃m
i=1Wi × Sn. Then T is

a Legendrian cycle of Rn+1.

Proof. For each i = 1, . . . ,m choose an open set Vi with compact closure in Wi and
fi ∈ C∞(Rn+1) such that spt(fi) is a compact subset of Wi,

∑m
i=1 fi(x) = 1 for

every x ∈
⋃m

i=1 Vi and spt(T ) ⊆
⋃m

i=1 Vi×Sn. Then T = T x(
∑m

i=1 fi),
∑m

i=1 dfi = 0
on
⋃m

i=1 Vi,

〈φ, T xα〉 =
m∑
i=1

〈fiφ, T xα〉 = 0

and

∂T (φ) =
m∑
i=1

∂T (fiφ) + T
[(∑m

i=1dfi

)
∧ φ
]
= 0

for every φ ∈ Dn−1(Rn+1 ×Rn+1). �

For the next definition recall (2.3) and (2.5).

Definition 2.6. Lipschitz–Killing forms (cf. [47]) For k ∈ {0, . . . , n} the k-th
Lipschitz–Killing form of Rn+1, ϕk ∈ En(Rn+1 ×Rn+1), is defined by the formula

〈ξ1 ∧ · · · ∧ ξn, ϕk(x, u)〉 =
∑

σ∈Σn,k

〈πσ(1)(ξ1) ∧ · · · ∧ πσ(n)(ξn) ∧ u,E′〉,

for every ξ1, . . . , ξn ∈ Rn+1 ×Rn+1, where

Σn,k =

{
σ : {1, . . . , n} → {0, 1} :

n∑
i=1

σ(i) = n− k

}
and π0 and π1 are the projections defined in (2.2).
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For 1 ≤ k ≤ m, we denote by Λ(m, k) the set of all increasing mappings from
{1, . . . , k} into {1, . . . ,m}.

Lemma 2.7. (cf. [16, Lemma 3.1]). The exterior derivatives of the Lipschitz–Killing
differential forms satisfy the following equations:

〈ξ1∧· · ·∧ ξn+1, d ϕk(x, u)〉 = 〈ξ1∧· · ·∧ ξn+1, α(x, u)∧ (n−k+1)ϕk−1(x, u)〉 (2.8)

for k = 1, . . . , n and

〈ξ1 ∧ · · · ∧ ξn+1, d ϕ0(x, u)〉 = 0, (2.9)

whenever ξ1, . . . , ξn+1 ∈ Tan(Rn+1 × Sn, (x, u)) and (x, u) ∈ Rn+1 × Sn.

Proof. We fix (x, u) ∈ Rn+1 × Sn.
Suppose k ≥ 0 and notice that ϕk : Rn+1 × Rn+1 →

∧n
(Rn+1 × Rn+1) is a

linear map. Henceforth, we compute (cf. [10, p. 352])

〈ξ1 ∧ · · · ∧ ξn+1, d ϕk(x, u)〉 (2.10)

=
n+1∑
j=1

(−1)j−1
〈
ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ · · · ∧ ξn+1, 〈ξj , Dϕk(x, u)〉

〉
=

n+1∑
j=1

(−1)j−1
〈
ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ · · · ∧ ξn+1, ϕk(ξj)

〉
=

n+1∑
j=1

(−1)j−1
∑

σ∈Σn,k

〈πσ(1)(ξ1) ∧ · · · ∧ πσ(j−1)(ξj−1) ∧ πσ(j)(ξj+1) ∧ · · ·

· · · ∧ πσ(n)(ξn+1) ∧ π1(ξj), E′〉

= (−1)n
n+1∑
j=1

∑
σ∈Σn,k

〈πσ(1)(ξ1) ∧ · · · ∧ πσ(j−1)(ξj−1) ∧ π1(ξj) ∧ πσ(j)(ξj+1) ∧ · · ·

· · · ∧ πσ(n)(ξn+1), E
′〉

for ξ1, . . . , ξn+1 ∈ Rn+1 ×Rn+1, whence we readily deduce (2.9). Moreover, if pu :
Rn+1 → Rn+1 is the orthogonal projection onto span{u} we use the permutation
formula (cf. [10, 1.4.2]) to compute

〈ξ1 ∧ · · · ∧ ξn+1, α(x, u) ∧ ϕk−1(x, u)〉 (2.11)

=
n+1∑
j=1

(−1)j−1 〈ξj , α(x, u)〉 〈ξ1 ∧ · · · ∧ ξj−1 ∧ ξj+1 ∧ · · · ∧ ξn+1, ϕk−1(x, u)〉

= (−1)n
n+1∑
j=1

∑
σ∈Σn,k−1

〈πσ(1)(ξ1) ∧ · · · ∧ πσ(j−1)(ξj−1) ∧ pu(π0(ξj))

∧ πσ(j)(ξj+1) ∧ · · · · · · ∧ πσ(n)(ξn+1), E
′〉
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whenever ξ1, . . . , ξn+1 ∈ Rn+1 × Rn+1 and k ≥ 1. Suppose τ1, . . . , τn ∈ u⊥ is an
orthonormal set and we define

vi = (τi, 0) for i = 1, . . . , n, vi = (0, τi−n) for i = n+1, . . . , 2n, v2n+1 = (u, 0),

which form an orthonormal basis of Rn+1 × u⊥. Then we define

vλ = vλ(1) ∧ · · · ∧ vλ(n+1) whenever λ ∈ Λ(2n+ 1, n+ 1)

and, recalling that {vλ : λ ∈ Λ(2n + 1, n + 1)} is a basis of
∧

n+1(R
n+1 × u⊥)

(cf. [10, 1.3.2]), we notice that (2.8) reduces to check

(n− k + 1) 〈vλ, α(x, u) ∧ ϕk−1(x, u)〉 = 〈vλ, d ϕk(x, u)〉 for λ ∈ Λ(2n+ 1, n+ 1).
(2.12)

Firstly, we notice that if λ ∈ Λ(2n + 1, n + 1) and 2n + 1 /∈ Im(λ) then one can
easily check from (2.10) and (2.11) that both sides of (2.12) must be equal to zero.

We fix now λ ∈ Λ(2n+1, n+1) such that λ(n+1) = 2n+1. Then π1(v2n+1) = 0
and we employ (2.10) to compute

〈vλ, d ϕk(x, u)〉

= (−1)n
n∑

j=1

∑
σ∈Σn,k

〈πσ(1)(vλ(1)) ∧ · · · ∧ πσ(j−1)(vλ(j−1)) ∧ π1(vλ(j))

∧ πσ(j)(vλ(j+1)) ∧ · · · · · · ∧ πσ(n−1)(vλ(n)) ∧ πσ(n)(v2n+1), E
′〉

= (−1)n
∑

j∈λ−1{n+1,··· ,2n}

∑
σ∈Σn,k

σ(n)=0

〈πσ(1)(vλ(1)) ∧ · · · ∧ πσ(j−1)(vλ(j−1)) ∧ τλ(j)−n∧

∧ πσ(j)(vλ(j+1)) ∧ · · · ∧ πσ(n−1)(vλ(n)) ∧ u,E′〉,

while, since pu(π0(vλ(j))) = 0 for j = 1, . . . , n, we obtain from (2.11)

〈vλ, α(x, u) ∧ ϕk−1(x, u)〉 = (−1)n
∑

σ∈Σn,k−1

〈πσ(1)(vλ(1)) ∧ · · · ∧ πσ(n)(vλ(n)) ∧ u,E′〉.

Therefore, if H0
(
λ−1{1, . . . , n}

)
6= k − 1 then

〈vλ, α(x, u) ∧ ϕk−1(x, u)〉 = 0 = 〈vλ, d ϕk(x, u)〉.

Finally, if H0
(
λ−1{1, . . . , n}

)
= k − 1 then

(n− k + 1) 〈vλ, α(x, u) ∧ ϕk−1(x, u)〉
= (n− k + 1) (−1)n 〈τλ(1) ∧ · · · ∧ τλ(k−1) ∧ τλ(k)−n ∧ · · · ∧ τλ(n)−n ∧ u,E′〉
= 〈vλ, d ϕk(x, u)〉.

�
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We recall that a local variation (Ft)t∈I of Rn+1 is a smooth map F : I×Rn+1 →
Rn+1, where I is an open interval of R with 0 ∈ I, such that F0 = F (0, ·) is the
identity of Rn+1 and Ft = F (t, ·) : Rn+1 → Rn+1 is a diffeomorphism for every
t ∈ I. For such local variation, we define the initial velocity vector field V by

V (x) = lim
t→0

Ft(x)− x

t
for x ∈ Rn+1.

Moreover, if F : U → V is a C 2-diffeomorphism between open subsets of Rn+1, we
define the C 1-diffeomorphism ΨF : U × Sn → V × Sn by

ΨF (x, u) =

(
F (x),

(DF (x)−1)∗(u)

|(DF (x)−1)∗(u)|

)
for (x, u) ∈ U × Sn. (2.13)

We define Rn+1
0 = Rn+1 \ {0}. For a local variation (Ft)t∈I (where I is an open

interval of R with 0 ∈ I) we define (cf. (2.13)) the smooth map h : Rn+1×Rn+1
0 ×

I → Rn+1 ×Rn+1 by

h(x, u, t) = ΨFt
(x, u) for (x, u, t) ∈ Rn+1 ×Rn+1

0 × I

and we notice that h(x, u, 0) = (x, u) for (x, u) ∈ Rn+1×Rn+1
0 . Moreover we define

p : Rn+1 ×Rn+1 ×R → Rn+1 ×Rn+1, p(x, u, t) = (x, u),

q : Rn+1 ×Rn+1 ×R → R, q(x, u, t) = t,

P : Rn+1 ×Rn+1 → Rn+1 ×Rn+1 ×R, P (x, u) = (x, u, 0).

Lemma 2.8. (cf. [16]). Suppose T is a Legendrian cycle of Rn+1 with spt(T )
compact, (Ft)t∈I is a local variation of Rn+1 with initial velocity vector field V and
θV : Rn+1 ×Rn+1 → R is given by θV (x, u) = V (x) • u for (x, u) ∈ Rn+1 ×Rn+1.

Then (see (2.13))

d

dt

[
(ΨFt

)#T
]
(ϕi)

∣∣∣
t=0

= (n+ 1− i)T (θV ∧ ϕi−1) for i = 1, . . . , n

and
d

dt

[
(ΨFt)#T

]
(ϕ0)

∣∣∣
t=0

= 0.

Proof. Firstly, a simple direct computation leads to

h#α ◦ P =
(
p#α+ θV dq

)
◦ P (2.14)

and (
h#ϕk ∧ dq

)
◦ P =

(
p#ϕk ∧ dq

)
◦ P. (2.15)

Suppose nowM ⊆ Rn+1×Sn is a countablyHn-rectifiable set and η is aHn xM -
measurable simple n-vectorfield such that |η(x, u)| is a positive integer for Hn a.e.
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(x, u) ∈M ,

T (φ) =

∫
M

〈η(x, u), φ(x, u)〉 dHn(x, u) for each φ ∈ Dn(Rn+1 ×Rn+1),

and Tann(Hn xM, (x, u)) is associated with η(x, u) for Hn a.e. (x, u) ∈ M . For
t > 0 we define J0, tK ∈ D1(R) by the formula

J0, tK(β) =
∫ 1

0

〈t, β(st)〉 ds =
∫ t

0

〈1, β(s)〉 ds for β ∈ E1(R).

Denoting by T × J0, tK ∈ Dn+1(R
n+1 ×Rn+1 ×R) the Cartesian product of T and

J0, tK, we employ [10, 4.1.8] to compute

(
T × J0, tK

)
(φ) =

∫
M

∫ t

0

〈
ζ(x, u, s), φ(x, u, s)

〉
ds dHn(x, u)

whenever φ ∈ En+1(Rn+1 ×Rn+1 ×R), where

ζ(x, u, s) =
(∧

nP
)
(η(x, u)) ∧ w2n+3 for Hn a.e. (x, u) ∈M and for s ∈ (0, t).

Employing [10, 4.1.8, 4.1.9] and taking into account that ∂T = 0 we derive the
homotopy formula (

ΨFt

)
#
T − T = (−1)n ∂

[
h#(T × J0, tK)

]
.

Since spt
(
h#
(
T × J0, tK

))
⊆ Rn+1 × Sn we use lemma 2.7 to compute[(

ΨFt

)
#
T − T

]
(ϕk) = (−1)n (n− k + 1)h#(T × J0, tK)(α ∧ ϕk−1)

= (−1)n (n− k + 1)

∫
M

∫ t

0

〈
ζ(x, u, s), h#α ∧ h#ϕk−1(x, u, s)

〉
ds dHn(x, u),

whence we infer that

lim
t→0

[(
ΨFt

)
#
T − T

]
(ϕk)

t

= (−1)n (n− k + 1)

∫
M

〈
ζ(x, u, 0), h#α ∧ h#ϕk−1(x, u, 0)

〉
dHn(x, u).

Using (2.14) and (2.15) we deduce that〈
ζ(x, u, 0), h#α ∧ h#ϕk−1(x, u, 0)

〉
= 〈ζ(x, u, 0), p#α ∧ h#ϕk−1(x, u, 0)〉+ 〈ζ(x, u, 0), θV (x, u) dq ∧ p#ϕk−1(x, u, 0)〉

for Hn a.e. (x, u) ∈ M . Moreover, noting that p(w2n+3) = 0 and 〈τ, α(x, u)〉 = 0
whenever τ ∈ Tann(Hn xM, (x, u)) for Hn a.e. (x, u) ∈ M by [30, Theorem 9.2],
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we obtain that

〈ζ(x, u, 0), p#α ∧ h#ϕk−1(x, u, 0)〉 = 0 for Hn a.e. (x, u) ∈M

and employing the shuffle formula we compute

〈ζ(x, u, 0), θV (x, u) dq ∧ p#ϕk−1(x, u, 0)〉 = (−1)n θV (x, u) 〈η(x, u), ϕk−1(x, u)〉

for Hn a.e. (x, u) ∈M . Moreover, applying lemma 2.7, we obtain

d

dt

[
(ΨFt

)#T
]
(ϕ0)

∣∣∣
t=0

= (−1)n lim
t→0

[h#(T × J0, tK)
]
(dϕ0)

t
= 0 .

�

2.4. The proximal unit normal bundle

The following notion plays a key role in this paper.

Definition 2.9. (cf. [34, p. 212]). If ∅ 6= C ⊆ Rn+1 we define the proximal unit
normal bundle of C as

nor(C) = {(x, ν) ∈ C × Sn : dist(x+ sν, C) = s for some s > 0}.

Remark 2.10. Notice that nor(C) = nor(C). We recall that nor(C) is a Borel
set and it is always countably Hn-rectifiable; see [40, Remark 4.3].1 However,
Hn x nor(C) might not be a Radon measure, even when C is the closure of a smooth
submanifold with bounded mean curvature; cf. lemma A.3 and remark A.4.

The following lemma is an extension of well-known results for sets of positive
reach (cf. [30, Lemmas 4.23 and 4.24]).

Lemma 2.11. Suppose C ⊆ Rn+1. For Hn a.e. (x, u) ∈ nor(C) there exist numbers

−∞ < κ1(x, u) ≤ . . . ≤ κn(x, u) ≤ ∞

and vectors τ1(x, u), . . . , τn(x, u) such that {τ1(x, u), . . . , τn(x, u), u} is an orthonor-
mal basis of Rn+1 and the vectors

ζi(x, u) =

(
1√

1 + κi(x, u)2
τi(x, u),

κi(x, u)√
1 + κi(x, u)2

τi(x, u)

)
, i = 1, . . . , n,

form an orthonormal basis of Tann(Hn xQ, (x, u)) for every Hn-measurable set
Q ⊆ nor(C) with Hn(Q) < ∞ and for Hn a.e. (x, u) ∈ Q (We set 1

∞ = 0 and
∞
∞ = 1). In particular,

nor(C) is a Legendrian rectifiable set.

Moreover, the maps κ1, . . . , κn can be chosen to be Hn xnor(C)-measurable and
they are Hn xnor(C)-almost uniquely determined.

1The unit normal bundle of a closed set C in [40] is denoted with N (C ).
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Proof. The existence part of the statement and the measurability property are
discussed in [14, Section 3] (see in particular [14, Remark 3.7]). Uniqueness can be
proved as in [30, Lemma 4.24]. �

Definition 2.12. If C ⊆ Rn+1, we denote by κC,1, . . . , κC,n the Hn x nor(C)
measurable maps given by lemma 2.11.

The following Heintze–Karcher-type inequality for arbitrary closed sets is proved
in [14].

Theorem 2.13 (cf. [14, Theorem 3.20]). Let C ⊆ Rn+1 be a bounded closed set
with non empty interior. Let K = Rn+1 \ interior(C) and assume that

n∑
i=1

κK,i(x, u) ≤ 0 for Hn a.e. (x, u) ∈ nor(K).

Then

(n+ 1)Ln+1(interior(C)) ≤
∫
nor(K)

Jnor(K)
n π0(x, u)

n

|
∑n

i=1 κK,i(x, u)|
dHn(x, u).

Moreover, if the equality holds and there exists q <∞ such that |
∑n

i=1 κK,i(x, u)| ≤
q for Hn a.e. (x, u) ∈ nor(K), then interior(C) is a finite union of disjointed
(possibly mutually tangent) open balls.

2.5. W 2,n-functions

Suppose U ⊆ Rn is open. We denote byW k,p(U) (resp.W k,p
loc (U)) the usual Sobolev

space of k -times weakly differentiable functions, whose distributional derivatives up
to order k belong to the Lebesgue space Lp(U) (resp. Lp

loc(U)); cf. [11, Chapter 7].
We denote by ∇f and Dif the distributional gradient and the distributional i -th
differential of a Sobolev function f.

We now state two results on the fine properties of W 2,n-functions, which play an
important role in this paper. We start with some definitions.

Definition 2.14. Given U ⊆ Rn open set and f : U → R continuous function,
we define Γ+(f, U) as the set of x ∈ U for which there exists p ∈ Rn such that

f(y) ≤ f(x) + p • (y − x) ∀y ∈ U.

Definition 2.15. Suppose f : U → R is a continuous function. We define S∗(f),
respectively S∗(f), as the set of x ∈ U , where there exists a polynomial function P
of degree at most 2 such that P (x) = f(x) and

lim sup
y→x

f(y)− P (y)

|y − x|2
<∞, respectively lim inf

y→x

f(y)− P (y)

|y − x|2
> −∞.
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Moreover, we set S(f) to be the set of x ∈ U , where there exists a polynomial
function P of degree at most 2 such that P (x) = f(x) and

lim
y→x

f(y)− P (y)

|y − x|2
= 0.

Lemma 2.16. If f ∈ C(U) ∩W 2,n(U), then Ln
(
U \ S(f)

)
= 0.

Proof. This is a special case of [5, Proposition 2.2], which is attributed to Calderon
and Zygmund. This result can also be proved by a simple adaptation of the method
of [27] (cf. [44]). An interesting generalization is given in [17]. �

The following oscillation estimate plays a key role in lemma 3.5 and was proved
by Ulrich Menne, see [24, Appendix B].

Lemma 2.17. Let a ∈ Rn, r > 0, f ∈ C(Br(a)) ∩W 2,n(Br(a)) and g ∈ C2(Br(a))
such that

g(a) = f(a), f(x) ≥ g(x) for every x ∈ Br(a).

Then there exists a constant c(n), depending only on n, such that

‖Df −Dg(a)‖Ln(Br(a)) ≤ c(n)r
(
‖D2f‖Ln(Br(a)) + r‖D2g‖L∞(Br(a))

)
, (2.16)

‖f − La‖L∞(Br(a)) ≤ c(n)r
(
‖D2f‖Ln(Br(a)) + r‖D2g‖L∞(Br(a))

)
, (2.17)

where La(x) = f(a) + Dg(a)(x − a) for x ∈ Rn. In particular, f is pointwise
differentiable at a with Df(a) = Dg(a).

Proof. See [24, Lemma B.3]. In particular, (2.16) and (2.17) follow from the esti-
mate of [24, Lemma B.3], while the pointwise differentiability of f at a directly
follows from (2.17). �

Remark 2.18. It follows from lemma 2.17 that if a ∈ S∗(f) ∪ S∗(f), then a is a
Lebesgue point of Df , the map f is pointwise differentiable at a, and

Df(a) = Df(a).

We conclude with a Lusin-type result for W 1,1-functions, which can be easily
deduced from well-known results of Calderon–Zygmund and Federer. We provide
a detailed proof since we were unable to find this precise statement in classical
references.

Lemma 2.19. Suppose U is an open subset of Rn and f ∈ W 1,1
loc (U,R

k). Then f
is Ln xU -approximately differentiable at Ln a.e. x ∈ U with apDf(x) = Df(x).
In particular, there exist countably many Ln-measurable subsets Ai of U such that
Ln
(
U \

⋃∞
i=1Ai

)
= 0 and Lip(f |Ai) <∞ for every i ≥ 1.
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Proof. By [6, Theorem 12] (or [46, Theorem 3.4.2]), we have that

lim
r→0

r−n−1

∫
B(x,r)

|f(y)− f(x)−Df(x)(y − x)| dLn(y) = 0 (2.18)

for Ln a.e. x ∈ U . Fix now x ∈ U such that (2.18) holds, define the affine function
Lx(y) = f(x) +Df(x)(y − x) for y ∈ Rn and notice that

εLn(B(x, r) ∩ {y : |f(y)− Lx(y)| ≥ ε r})
rn

≤ r−n−1

∫
B(x,r)

|f(y)− Lx(y)| dLny

for every ε> 0. Henceforth, by (2.18) and [39, Lemma 2.7],

Θn
(
Ln x{y : |f(y)− Lx(y)| ≥ 2ε|y − x|}, x

)
= 0 for every ε > 0,

whence we conclude that f is Ln xU -approximately differentiable at x with
apDf(x) = Df(x) applying [10, p. 253] with φ and m replaced by Ln xU and
n. Now we can use [10, 3.1.8] to infer the existence of the countable cover Ai. �

3. Legendrian cycles over W 2,n-graphs

The main result of this section (theorem 3.9) proves that the Legendrian cycle
associated with the subgraph of a W 2,n-function is carried over its proximal unit
normal bundle. This is the key result to extend the Alexandrov sphere theorem to
W 2,n-domains.

Definition 3.1. Suppose ψ : Rn → Rn+1 is defined as

ψ(y) =
(−y, 1)√
1 + |y|2

.

If f ∈W 2,n(U) ∩ C(U), we define

Φf (x) = (x, f(x), ψ(∇f(x))) ∈ U ×R× Sn for every x ∈ Diff(f).

Remark 3.2. Let Sn
+ = {(z, t) ∈ Rn ×R : |z|2 + t2 = 1, t > 0}. Notice that ψ is

a diffeomorphism onto Sn
+ with inverse given by

ϕ : Sn
+ → Rn, ϕ(z, t) = −z

t
,

and ‖Dψ(y)‖ ≤ 2 for y ∈ Rn.

Remark 3.3. We recall that ∇f is Ln xU -approximately differentiable at Ln a.e.
a ∈ U by lemma 2.19. Moreover, ∇f(a) = ∇f(a) for Ln a.e. a ∈ U by remark
2.18. If a ∈ Diff(f) and ∇f is LnxU -approximately differentiable at a, then Φf is
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Ln xU -approximately differentiable at a and

apDΦf (a)(τ) =
(
τ,Df(a)(τ), 〈apD(∇f)(a)(τ), Dψ(∇f(a))〉

)
for every τ ∈ Rn. In particular apDΦf (a) is injective for Ln a.e. a ∈ U and,
recalling (3.2) and noting that D(∇f) = apD(∇f) by lemma 2.19, we infer that∫

U

‖ apDΦf‖n dLn ≤ c(n)

(
Ln(U) +

∫
U

‖Df‖n dLn +

∫
U

‖D2f‖n dLn

)
.

It follows that Φf is a W 1,n-map over U.

Remark 3.4. The following basic fact of measure theory is used in the proof of
lemma 3.5. Suppose µ is a measure over a set X, C is a positive constant, and
{Ej : j ∈ S} is a countable family of µ-measurable sets, such that H0({j ∈ S :
Ej ∩ Ei 6= ∅}) ≤ C for every i ∈ S. Then

∑
i∈S

µ(Ei) ≤ Cµ

( ⋃
i∈S

Ei

)
.

The following result is proved using a Rado–Reichelderfer-type argument; cf. [21]
and references therein.

Lemma 3.5. If f ∈ C(U) ∩W 2,n
loc (U) then Hn(Φf (Z)) = 0 for every Z ⊆ S∗(f)

such that Ln(Z) = 0.

Proof. Given µ> 0 and V ⊆ U , we define X(V, µ) as the set of x ∈ V for which
there exists a polynomial function Q of degree at most 2 such that f(y) ≤ Q(y) for
every y ∈ V , f(x) = Q(x), ‖DQ(x)‖ ≤ µ and ‖D2Q‖ ≤ µ. If D ⊆ U is a countable
dense subset of U and I(c) = {s ∈ Q : Bs(c) ⊆ U} for every c ∈ D, then we notice
that

S∗(f) ⊆
⋃
c∈D

⋃
s∈I(c)

∞⋃
i=1

X(Bs(c), i).

Henceforth, it is sufficient to show that Hn(Φf (Z)) = 0 whenever Z ⊆ X(U, µ)
with Ln(Z) = 0, for some µ> 0. Notice that f is pointwise differentiable at each
point of the set X(V, µ), by lemma 2.17.

Now we prove the following estimates: given c ∈ U and 0 < r < 1 such that
B3r(c) ⊆ U , then

‖Df(a)−Df(b)‖ ≤ c(n)
(
‖D2f‖Ln(B3r(c)) + µr

)
(3.1)

|f(a)− f(b)| ≤ c(n)r
(
‖D2f‖Ln(B3r(c)) + µ

)
(3.2)

for every a, b ∈ X(U, µ)∩Br(c). We fix a, b ∈ X(U, µ)∩Br(c), a ≠ b, and we define

s =
|a− b|

2
and d =

a+ b

2
.
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We notice that s ≤ r,

Bs(d) ⊆ B2s(a) ∩B2s(b) and B2s(a) ∪B2s(b) ⊆ B3r(c);

consequently it follows from (2.16) of lemma 2.17 that

‖Df −Df(e)‖Ln(Bs(d)) ≤ ‖Df −Df(e)‖Ln(B2s(e))

≤ c(n)s
(
‖D2f‖Ln(B2s(e)) + µs

)
≤ c(n)s

(
|D2f‖Ln(B3r(c)) + µr

)
,

for e ∈ {a, b}, whence we infer

α(n)1/ns‖Df(a)−Df(b)‖ ≤ ‖Df −Df(a)‖Ln(Bs(d)) + ‖Df −Df(b)|Ln(Bs(d))

≤ c(n)s
(
‖D2f‖Ln(B3r(c)) + µr

)
and (3.1) is proved. Moreover, combining (2.17) of lemma 2.17 with (3.1)

|f(a)− f(b)|
≤ ‖f − La‖L∞(Bs(d)) + ‖f − Lb‖L∞(Bs(d)) + s‖Df(a)‖+ s‖Df(b)‖
≤ ‖f − La‖L∞(B2s(a)) + ‖f − Lb‖L∞(B2s(b)) + 2µr

≤ c(n)r
(
‖D2f‖Ln(B3r(c)) + µ

)
.

We consider the function f × ∇f mapping x ∈ Diff(f) into (f(x),∇f(x)) ∈
R2n+1. Then it follows from (3.1) and (3.2) that

diam
[
(f ×∇f)

(
Br(c) ∩X(U, µ)

)]
≤ c(n, µ)

(
‖D2f‖Ln(B3r(c)) + r

)
. (3.3)

Let Z ⊆ X(U, µ) bounded and Ln(Z) = 0. Given ε> 0, we choose an open set
V ⊆ U such that Z ⊆ V , and

Ln(V ) ≤ ε, ‖D2f‖nLn(V ) ≤ ε. (3.4)

We define R : Z → R and ρ : Z → R as

R(x) = inf

{
1,

dist(x,Rn \ V )

4

}
, for x ∈ Z,

ρ(x) = diam ((f ×∇f)(BR(x)(x) ∩X(U, µ))), for x ∈ Z.

We notice that R is a Lipschitzian function with Lip(R) ≤ 1
4 and, noting that

B3R(x)(x) ⊆ V for every x ∈ Z and combining (3.3) and (3.4), we obtain

ρ(x) ≤ c(n, µ)
(
‖D2f‖Ln(B3R(x)(x)) +R(x)

)
≤ c(n, µ)ε1/n, (3.5)
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for x ∈ Z. We prove now the following claim: there exists C ⊆ Z countable such
that

{BR(y)/5(y) : y ∈ C} is disjointed,

Z ⊆
⋃
y∈C

BR(y)(y),

and

H0
(
{y ∈ C : B3R(y)(y) ∩B3R(x)(x) 6= ∅}

)
≤ c(n), for every x ∈ Z.

Applying Besicovitch covering theorem [3, Theorem 2.17] (see also the remark at
the beginning of p. 52), there exists a positive constant ξ(n) depending only on n,
and there exist Z1, . . . , Zξ(n) ⊆ Z such that

Z ⊆
ξ(n)⋃
i=1

⋃
x∈Zi

BR(x)/5(x),

and {BR(x)/5(x) : x ∈ Zi} is disjointed for every i = 1, . . . , ξ(n). We now apply [10,

Lemma 3.1.12] with S = Zi, U =Z, h = R
5 , λ = 1

20 and α = β = 15, to infer that

H0
(
{y ∈ Zi : B3R(y)(y) ∩B3R(x)(x) 6= ∅}

)
≤ c(n), for every i = 1, . . . , ξ(n).

We define Z ′ =
⋃ξ(n)

i=1 Zi, and we notice that Z ⊆
⋃

x∈Z′ BR(x)/5(x) and

H0
(
{y ∈ Z ′ : B3R(y)(y) ∩B3R(x)(x) 6= ∅}

)
≤ ξ(n)c(n), for every x ∈ Z.

Now we apply Vitali covering theorem to find a countable set C ⊆ Z ′ such that
{BR(x)/5(x) : x ∈ C} is disjointed and

Z ⊆
⋃
x∈C

BR(x)(x),

which proves the claim.
Denoting with φδ the size δ approximating measure of the n-dimensional

Hausdorff measure Hn of R2n+1 (cf. [10, 2.10.1, 2.10.2]), and combining (3.5) with
the claim above and with remark 3.4, we have

φc(n,µ)ε1/n((f ×∇f)(Z)) ≤ c(n)
∑
y∈C

ρ(y)n

≤ c(n, µ)
∑
y∈C

(
‖D2f‖Ln(B3R(y)(y)) +R(y)

)n
≤ c(n, µ)

∑
y∈C

R(y)n + c(n, µ)
∑
y∈C

∫
B3R(y)(y)

‖D2f‖n dLn

≤ c(n, µ)Ln(V ) + c(n, µ)

∫
V

‖D2f‖n dLn

≤ c(n, µ)ε.
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Henceforth, letting ε→ 0 we deduce thatHn((f×∇f)(Z)) = 0. Since Φf = (1Rn+1×
ψ) ◦ (f ×∇f) (see remark 3.2), we conclude that Hn(Φf (Z)) = 0. �

Lemma 3.6. Suppose U ⊆ Rn is open, γ > 1
2 , f ∈ C0,γ(U), x ∈ U , ν ∈ Sn ⊆

Rn ×R such that Bn+1(f(x) + sν, s) ∩ f(U) = ∅ for some s> 0.
Then ν /∈ Rn × {0}. In particular, this is always true for f ∈W 2,n

loc (U) ∩ C(U).

Proof. We prove the assertion by contradiction. Suppose 0 ∈ U and f(0) = 0; hence
there exists c ∈ U \ {0} such that

Bn+1(c, |c|) ∩G = ∅ and K := Bn+1(c, |c|) ∩ (Rn × {0}) ⊆ U.

Suppose L> 0 such that |f(x)− f(y)| ≤ L|x− y|γ for every x, y ∈ K, and define

h±(x) = ±
√
|c|2 − |x− c|2 = ±

√
2c • x− |x|2

for x ∈ K. Henceforth, either h+(x) ≤ f(x) for every x ∈ K, or f(x) ≤ h−(x) for
every x ∈ K. In both cases, replacing x with tc and 0 < t < 1, one obtains

t1−2γ(2− t) ≤ L2|c|2γ−2

for 0 < t < 1. This is clearly impossible, since 1− 2γ < 0. �

Definition 3.7. If U ⊆ Rn is an open set and f : U → R is a function, we define

Ef = {(x, u) ∈ U ×R : u ≤ f(x)}

and

Nf = nor(Ef ) ∩ (U ×R×Rn+1).

Lemma 3.8. If U is a bounded open set and f ∈W 2,n(U) ∩ C(U) then

Nf ∩ (A×R×Rn+1) = Φf

[
A ∩ S∗(f)

]
(3.6)

for every A ⊆ U , and∫
Nf

β dHn =

∫
U

β(Φf (x)) ap JnΦf (x) dLn(x), (3.7)

whenever β : U × R × Rn+1 → R is a Hn-measurable non-negative function. In
particular, Hn(Nf ) <∞ and

apDΦf (x)[R
n] = Tann(Hn xNf ,Φf (x)) (3.8)

for Ln a.e. x ∈ S∗(f).

Proof. Suppose (z, ν) ∈ Nf , where z = (x, f(x)) with x ∈ A, and s > 0 such that
Bn+1(z+ sν, s)∩Ef = ∅. Since ν /∈ Rn×{0} by lemma 3.6, we can easily see that
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there exists an open set W ⊆ U ×R with z ∈ W , an open set V ⊆ U with x ∈ V ,
and a smooth function g : V → R such that f(x) = g(x) and

W ∩Bn+1(z + sν, s) = {(y, u) : y ∈ V, u > g(y)};

in particular f(y) ≤ g(y) for every y ∈ V . It follows that x ∈ S∗(f), x ∈ Diff(f)
and Df(x) = Dg(x) by lemma 2.17. Noting that

ν =
(−∇g(x), 1)√
1 + |∇g(x)|2

we conclude (z, ν) = Φf (x) and Nf ∩ (A×R×Rn+1) ⊆ Φf (S∗(f) ∩A).
The opposite inclusion is clear, since for every x ∈ S∗(f) there exists a polynomial

function P and an open neighbourhood V of x, such that P (x) = f(x) and P (y) ≥
f(y) for every y ∈ V .

We prove now the area formula in (3.7). Since Φf is a W 1,n-map (see remark
3.3), we apply lemma 2.19 with f replaced by Φf and we find countably many
Ln-measurable sets Bi of U such that Lip

(
Φf |Bi

)
<∞ for every i ≥ 1 and

Ln

(
U \

∞⋃
i=1

Bi

)
= 0.

Then we set

A1 = B1 ∩ S∗(f), Ai = Bi ∩ S∗(f) \
⋃i−1

`=1B` for i ≥ 2

and we notice that

Ln
(
U \

⋃∞
i=1Ai

)
= 0 and Hn

(
Nf \

⋃∞
i=1Φf (Ai)

)
= 0 (3.9)

by lemma 2.16, lemma 3.5, and (3.6). If β : U×R×Rn+1 → R is a Hn-measurable
non-negative function, firstly we notice that (cf. [10, 2.4.8])∫

U

β(Φf (x)) ap JnΦf (x) dLn(x) =
∞∑
i=1

∫
Ai

β(Φf (x)) ap JnΦf (x) dLn(x),

then, recalling [10, 2.10.43], we use the area formula for Lipschitzian maps in [10,
3.2.5] and the injectivity of Φf to compute∫

Ai

β(Φf (x)) ap JnΦf (x) dLn(x) =

∫
Φf (Ai)

β(y) dHn(y) for i ≥ 1

and we use (3.9) to conclude∫
U

β(Φf (x)) ap JnΦf (x) dLn(x) =
∞∑
i=1

∫
Φf (Ai)

β(y) dHn(y)

=

∫
Nf

β(y) dHn(y).
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Choosing β=1 we conclude that Hn(Nf ) < ∞ and we deduce that
Tann(Hn xNf , (z, ν)) is an n-dimensional plane for Hn a.e. (z, ν) ∈ Nf . Let Di

be the set of x ∈ Ai such that Θn(Ln xRn \Ai, x) = 0, apDΦf (x) is injective and
Tann(Hn xNf ,Φf (x)) is an n-dimensional plane. Noting [10, 2.10.19] and remark
3.3, we deduce that

Hn
(
Ai \Di

)
= 0.

Noting that Tann(Ln xAi, x) = Rn for x ∈ Di, and noting that Ψ|Ai is a bi-lipschitz
homeomorphism onto Φf (Ai), we employ [40, Lemma B.2] to conclude

apDΦf (x)[R
n] = DΨi(x)

[
Tann(Ln xAi, x)

]
⊆ Tann(Hn xΨi(Ai),Φf (x)) ⊆ Tann(Hn xNf ,Φf (x))

for every x ∈ Di. Since Tann(Hn xNf ,Φf (x)) is an n-dimensional plane and
apDΦf (x) is injective for every x ∈ Di, we conclude that

apDΦf (x)[R
n] = Tann(Hn xNf ,Φf (x)) for every x ∈ Di.

�

Theorem 3.9. If U ⊆ Rn is a bounded open set and f ∈ W 2,n(U) ∩ C(U), then
there exists a Borel n-vectorfield η on Nf such that

(Hn xNf ) ∧ η is a Legendrian cycle of U ×R

and, for Hn a.e. (z, ν) ∈ Nf ,

|η(z, ν)| = 1, η(z, ν) is simple,

Tann(Hn xNf , (z, ν)) is associated with η(z, ν),

〈
[∧

nπ0
]
(η(z, ν)) ∧ ν,E′〉 > 0.

Proof. We identifyRn+1 ' Rn×R and we consider the orthonormal basis ε1, . . . , εn
of Rn such that (εi, 0) = ei for i = 1, . . . , n (cf. (2.3)). We use the notation
D1, . . . Dn and apD1, . . . , apDn for the partial derivatives and the approximate
partial derivatives with respect to ε1, . . . , εn, respectively. We notice by [10, 3.1.4]
that apDiΦf is a Ln xU -measurable map for i = 1, . . . , n. Henceforth, by the
classical Lusin theorem (cf. [10, 2.3.5, 2.3.6]) there exists a Borel map ξi : U →
Rn ×R×Rn+1 such that ξi is Ln xU almost equal to apDiΦf for i = 1, . . . , n.

Since
∫
U
|ξ1 ∧ · · · ∧ ξn| dLn <∞ by remark 3.3, we define

T (φ) =

∫
U

〈ξ1(x) ∧ · · · ∧ ξn(x), φ(Φf (x))〉 dLn(x) (3.10)

for φ ∈ Dn(U × R × Rn+1) and we notice that T ∈ Dn(U × R × Rn+1). We
choose now a sequence fk ∈ C∞(U) ∩ W 2,n(U) such that fk → f in W 2,n(U),
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fk(x) → f(x) and Dfk(x) → Df(x) for Ln a.e. x ∈ U ; see [11, Theorem 7.9]. Since
Φfk : U → U ×R×Rn+1 is a smooth proper map, we define

Tk = (Φfk)#
(
(Ln xU) ∧ ε1 ∧ · · · ∧ εn

)
∈ Dn(U ×R×Rn+1)

and we prove that

Tk → T in Dn(U ×R×Rn+1). (3.11)

Noting that

Tk(φ) =

∫
U

〈D1Φfk(x) ∧ · · · ∧DnΦfk(x), φ(Φfk(x))〉 dLn(x)

whenever φ ∈ Dn(U ×R×Rn+1), we estimate

|Tk(φ)− T (φ)| (3.12)

≤
∫
U

∣∣〈D1Φfk(x) ∧ · · · ∧DnΦfk(x)− ξ1(x) ∧ · · · ∧ ξn(x), φ(Φfk(x))〉
∣∣ dLn(x)

+

∫
U

∣∣〈ξ1(x) ∧ · · · ∧ ξn(x), φ(Φfk(x))− φ(Φf (x))〉
∣∣ dLn(x)

≤ ‖φ‖L∞(U)

∫
U

∣∣D1Φfk(x) ∧ · · · ∧DnΦfk(x)− ξ1(x) ∧ · · · ∧ ξn(x)
∣∣ dLn(x)

+

∫
U

ap JnΦf (x) ‖φ(Φf (x))− φ(Φfk(x))‖ dLn(x)

for φ ∈ Dn(U ×R ×Rn+1). Moreover, noting that ap JnΦf ∈ L1(U) (see remark
3.3) and

ap JnΦf (x) ‖φ(Φf (x))− φ(Φfk(x))‖ ≤ 2‖φ‖L∞(U×R×Rn) ap JnΦf (x)

for Ln a.e. x ∈ U and for every k ≥ 1, it follows from the dominated convergence
theorem that

lim
k→∞

∫
U

ap JnΦf (x) ‖φ(Φf (x))− φ(Φfk(x))‖ dLn(x) = 0. (3.13)

We observe that

D1Φfk ∧ · · · ∧DnΦfk − ξ1 ∧ · · · ∧ ξn

=
n∑

i=1

ξ1 ∧ · · · ∧ ξi−1 ∧
(
DiΦfk − ξi

)
∧Di+1Φfk ∧ · · · ∧DnΦfk
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and we use the generalized Holder’s inequality to estimate∫
U

∣∣D1Φfk ∧ · · · ∧DnΦfk − ξ1 ∧ · · · ∧ ξn
∣∣ dLn (3.14)

≤
n∑

i=1

∫
U

∣∣ξ1 ∧ · · · ∧ ξi−1

∣∣ · ∣∣ξi −DiΦfk

∣∣ · ∣∣Di+1Φfk ∧ · · · ∧DnΦfk

∣∣ dLn

≤
n∑

i=1

∫
U

‖ apDΦf‖i−1 · ‖ apDΦf −DΦfk‖ · ‖DΦfk‖n−i dLn

≤
n∑

i=1

(∫
U

‖ apDΦf‖n dLn

) i−1
n

·
(∫

U

‖ apDΦf −DΦfk‖n dLn

) 1
n

·
(∫

U

‖DΦfk‖n dLn

)n−i
n

.

Moreover, by (3.2),

∫
U

‖DΦfk − apDΦf‖n dLn

≤ c(n)

(∫
U

‖Dfk −Df‖n dLn +

∫
U

‖D(ψ ◦ ∇fk)−D(ψ ◦∇f)‖n dLn

)
≤ c(n)

(∫
U

‖Dfk −Df‖n dLn +

∫
U

‖Dψ(∇fk)‖n‖D2fk −D2fk‖n dLn

+

∫
U

‖Dψ(∇fk)−Dψ(∇f)‖n‖D2f‖n dLn

)
≤ c(n)

(∫
U

‖Dfk −Df‖n dLn +

∫
U

‖D2fk −D2fk‖n dLn

+

∫
U

‖Dψ(∇fk)−Dψ(∇f)‖n‖D2f‖n dLn

)
and

lim
k→∞

∫
U

‖Dψ(∇fk)−Dψ(∇f)‖n‖D2f‖n dLn = 0

by dominated convergence theorem. Consequently, ‖DΦfk −DΦf‖Ln(U) → 0, and
combining (3.12), (3.13), and (3.14) we obtain (3.11).

Since ∂Tk = 0 for every k ≥ 1, we readily infer from (3.11) that ∂T = 0. Define
G = [Φf |S∗(f)]−1 : Nf → U and notice that G is simply the restriction on Nf of
the linear function that maps a point of Rn+1 ×Rn+1 onto its first n coordinates;
in particular G is a Borel map (recall that Nf is a Borel set). We employ lemma
3.8 to see that

T (φ) =

∫
Nf

〈ξ
[
G(z, ν)

]
, φ(z, ν)〉 dHn(z, ν) (3.15)
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for every φ ∈ Dn(U ×R ×Rn+1), where ξ : U →
∧

n(R
n+1 ×Rn+1) is the Borel

map defined as

ξ(x) =
ξ1(x) ∧ · · · ∧ ξn(x)∣∣ξ1(x) ∧ · · · ∧ ξn(x)

∣∣ .
Then we define the Borel map

η : Nf →
∧

n(R
n+1 ×Rn+1), η = ξ ◦G,

and we readily infer that Tann(Hn xNf , (z, ν)) is associated with η(z, ν) for Hn

a.e. (z, ν) ∈ Nf by lemma 3.8, and (Hn xNf ) ∧ η is a Legendrian cycle by lemma
2.11. Finally, we use remark 3.3 and shuffle formula (see [10, p. 19]) to compute〈[∧

n π0
]
(ξ(x)) ∧ ψ(∇f(x)), E′〉
=

1

ap JnΦf (x)
〈D1f(x) ∧ · · · ∧Dnf(x) ∧ ψ(∇f(x)), E′〉

=
e′n+1(ψ(∇f(x)))

ap JnΦf (x)
> 0

for Ln a.e. x ∈ U . �

4. The support of Legendrian cycles

Suppose C ⊆ Rn+1. We define Unp(C) as the set of x ∈ Rn+1 \C such that there
exists a unique y ∈ C with dist(x,C) = |y − x|. It is well known that Rn+1 \ (C ∪
Unp(C)) is the set of points in Rn+1 \ C, where dist(·, C) is not differentiable,
see [20, Lemma 2.41(c)] and references therein. In particular, Rademacher theorem
ensures that

Ln+1(Rn+1 \ (C ∪Unp(C))) = 0. (4.1)

The nearest point projection ξC is multivalued function mapping x ∈ Rn+1 onto

ξC(x) = {a ∈ C : |a− x| = dist(x,C)}.

Notice that ξC |Unp(C) is single-valued and we define

νC(x) =
x− ξC(x)

dist(x,C)
and ψC(x) = (ξC(x), νC(x))

for x ∈ Unp(C). It is well known (see [9, Theorem 4.8(4)]) that ξC, νC and ψC are
continuous functions over Unp(C) and it is easy to see that

nor(C) = ψC(Unp(C)). (4.2)

We also define

ρC(x) = sup{s > 0 : dist(a+ s(x− a), C) = sdist(x,C)}

for x ∈ Rn+1 \ C and a ∈ ξC(x). This definition does not depend on the choice of
a ∈ ξC(x), the function ρC : Rn+1 \ C → [1,∞] is upper-semicontinuous and we
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set

Cut(C) = {x ∈ Rn+1 \ C : ρC(x) = 1};

see [20, Remark 2.32 and Lemma 2.33]. Finally, we define

St(C) = {x ∈ Rn+1 : dist(x,C) = t} for t > 0

and we recall from [14, Lemma 4.2(53)] that

Hn(St(C) ∩Unp(C) ∩ Cut(C)) = 0 for every t > 0. (4.3)

We are ready to prove the following lemma.

Lemma 4.1. If C ⊆ Rn+1 and W ⊆ Rn+1 × Rn+1 is an open set such that
W ∩ nor(C) 6= ∅, then Hn(W ∩ nor(C)) > 0.

Proof. Notice that Rn+1 \C 6= ∅ since nor(C) 6= ∅. It follows from the continuity
of ψC that ψ−1

C (W ∩nor(C)) is relatively open in Unp(C). Henceforth, we conclude
from (4.1) that

Ln+1
(
ψ−1
C (W ∩ nor(C))

)
> 0.

We define T = ψ−1
C (W ∩ nor(C)). Since J1dist(·, C) is Ln+1 almost equal to the

constant function 1 on Rn+1 \ C, we use coarea formula to compute

0 < Ln+1(T ) =

∫
Hn(T ∩ St(C)) dt

we infer there exists τ > 0 so that Hn(T ∩Sτ (C)) > 0, and we use (4.3) to conclude

Hn
(
(T ∩ Sτ (C)) \ Cut(C)

)
> 0.

Consequently there exists s > τ so that

Hn
(
T ∩ Sτ (C) ∩ {ρC ≥ s/τ}

)
> 0.

Since ψC |Sτ (C) ∩ {ρC ≥ s/τ} is a bi-lipschitz homeomorphism by [14, Theorem
3.16], we conclude that

Hn
(
ψC

[
T ∩ Sτ (C) ∩ {ρC ≥ s/τ}

])
> 0,

whence we infer that Hn(W ∩ nor(C)) > 0. �

Remark 4.2. In relation with lemma 4.1, the following example is particularly
appropriate.

Suppose 0 < α < 1 and f : Rn → R is a C1,α-function such that

Hn({(x, f(x)) : x ∈ Rn} ∩B) = 0

whenever B is an n-dimensional C 2-submanifold of Rn+1. The existence of this
type of functions is proved in [33]. We define M = {(x, f(x)) : x ∈ Rn}, we choose
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ν :M → Sn a unit-normal vector field of M of class C0,α and we define

N+ = {(x, ν(x)) : x ∈M} and N− = {(x,−ν(x)) : x ∈M}.

Clearly, N+ and N− are disjointed closed n-dimensional C0,α-submanifolds with-
out boundary of Rn+1 × Sn and nor(M) ⊆ N+ ∪ N−. Moreover, we notice that
Hn(π0(nor(M))) = 0 since π0(nor(M)) is Hn-rectifiable of class 2 by [25]. Noting
that π0|N+ and π0|N− are homeomorphisms and recalling remark 2.10, we con-
clude that nor(M) is a countably Hn-rectifiable subset of N+ ∪ N− with empty
relative interior.

For the next proof we recall that, for a subset C ⊆ Rn+1, the normal cone
Nor(C, z) (see [10, 3.1.21]) coincides with the cone of regular normals of C at z

introduced in [34, Definition 6.3] (and denoted there by N̂C(z)), while nor(C, z) is
the cone of proximal normals of unit length of C at z defined in [34, Example 6.16].

Lemma 4.3. Suppose U ⊆ Rn is open and f ∈ C(U) such that ∇f [Diff(f)] is a
dense subset of U ×Rn. Then nor(Ef ) is dense in G×Sn

+, where G = {(x, f(x)) :
x ∈ U}.

Proof. First, we observe that

ψ(∇f(x)) ∈ Nor(Ef , f(x)) for every x ∈ Diff(f).

Since ψ is a diffeomorphism of Rn onto Sn
+ and f is continuous, the set

{(f(x), ψ(∇f(x))) : x ∈ U} is dense in G×Sn
+; consequently we infer that nor(Ef )

is dense in G×Sn
+ by standard approximation of regular normals, see [34, Exercise

6.18(a)]. �

Fu in [17, p. 2260] observed that there exist continuous functions as in lemma
4.3 that belong to W 2,n(U). Consequently, combining lemma 4.1, lemma 4.3, and
theorem 3.9, we conclude that there exists n-dimensional Legendrian cycles (of
open subsets on Rn+1) whose support has positive H2n-measure. This answers a
question implicit in [29, Remark 2.3].

5. Reilly-type variational formulae for W 2,n-domains

In this section, we study the structure of the unit normal bundle of a W 2,n-domain
(see theorem 5.7), and we prove the variational formulae for their mean curvature
functions (see theorem 5.15). The latter extends the well known variational formulae
obtained by Reilly in [31] for smooth domains. As a corollary Minkowski–Hsiung
formulae are also proved; see theorem 5.17.

Definition 5.1. (Viscosity boundary). Suppose Ω ⊆ Rn+1 be an open set. We
define ∂v+Ω to be the set of all p ∈ ∂Ω such that there exists ν ∈ Sn and r > 0 such
that
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Bn+1(p+ rν, r) ∩ Ω = ∅ and Bn+1(p− rν, r) ⊆ Ω.

[Notice {p} = ∂B(p + rν, r) ∩ ∂B(p − rν, r).] Clearly for each p ∈ ∂v+Ω the unit
vector ν is unique. This defines an exterior unit-normal vector field on ∂v+Ω,

νΩ : ∂v+Ω → Sn.

We introduce the notion of second-order rectifiability. Suppose X ⊆ Rm and µ
is a positive integer such that Hµ(X) <∞. We say that X is Hµ-rectifiable of class
2 if and only if there exists countably many µ-dimensional submanifolds Σi ⊆ Rm

of class 2 such that

Hµ
(
X \

⋃∞
i=1 Σi

)
= 0.

Lemma 5.2. Suppose X ⊆ Rn+1 is Hn-measurable and Hn-rectifiable of class 2,
and ν : X → Sn is a Hn xX-measurable map such that

ν(a) ∈ Norn(Hn xX, a) for Hn a.e. a ∈ X.

Then there exist countably many Hn-measurable sets Xi ⊆ X such that
Hn
(
X \

⋃∞
i=1Xi

)
= 0 and Lip(ν|Xi) < ∞; moreover, ν is Hn xX-approximately

differentiable at Hn a.e. a ∈ X and apDν(a) is a symmetric endomorphism of
Tann(Hn xX, a).

Proof. Suppose {Σi}i≥1 is a countable family of C 2-hypersurfaces such that

Hn
(
X \

⋃∞
i=1Σi

)
= 0

and ηi : Σi → Sn is a continuously differentiable unit-normal vector field with
Lip(ηi) <∞ for i ≥ 1. By [10, 2.10.19(4)]

Θn(Hn xX \ Σi, a) = Θn(Hn xΣi \X, a) = 0 for Hn a.e. a ∈ Σi ∩X,

whence we infer that Tann(Hn xX, a) = Tan(Σi, a) for Hn a.e. a ∈ Σi ∩ X. In
particular, if we define

Σ+
i = {a ∈ Σi ∩X : ηi(a) = ν(a)} and Σ−

i = {a ∈ Σi ∩X : ηi(a) = −ν(a)}

we infer that Hn
(
Σi ∩ X \ (Σ+

i ∪ Σ−
i )
)
= 0 for each i ≥ 1. Moreover, employing

again [10, 2.10.19(4)] we infer that

Θn(Hn xX \ Σ±
i , a) = 0 for Hn a.e. a ∈ Σ±

i ,

whence we deduce that ν is Hn xX approximately differentiable at a with

apDν(a) = ±Dηi(a)

for Hn a.e. a ∈ Σ±
i . Finally, since Dηi(a) is symmetric, we conclude the proof. �

We introduce now the class of W 2,n-domains in a slightly more general fashion
than the notion given in the Introduction.

https://doi.org/10.1017/prm.2025.10047 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2025.10047


30 M. Santilli and P. Valentini

Definition 5.3. An open set Ω ⊆ Rn+1 is a W 2,n-domain if and only there exists
a couple (Ω′, F ), where

(1) Ω′ ⊆ Rn+1 is an open set such that for each p ∈ ∂Ω′ there exist ε> 0,
ν ∈ Sn, a bounded open set U ⊆ ν⊥ with 0 ∈ U and a continuous function
f ∈W 2,n(U) with f(0) = 0 such that

{p+ b+ τν : b ∈ U, −ε < τ ≤ f(b)} = Ω′ ∩ {p+ b+ τν : b ∈ U, −ε < τ < ε},

(2) F is a C2-diffeomorphism defined over an open set V ⊆ Rn+1 such that
Ω′ ⊆ V , and

(3) F (Ω′) = Ω.

Remark 5.4. This class of domains is invariant under images of C 2-
diffeomorphisms, which is clearly a necessary condition in order to provide a natural
framework to generalize Reilly’s variational formulae. We do not know if we really
need to introduce the diffeomorphism F in the definition above; in other words, if
Ω′ belongs to the class S of domains satisfying only condition (1) of definition 5.3,
is it true that F (Ω′) belongs to S too?

We collect some basic properties of W 2,n-domains.

Lemma 5.5. If Ω ⊆ Rn+1 is a W 2,n-domain, then the following statements hold.

(1) Hn(∂Ω\∂v+Ω) = 0 and K∩∂Ω is Hn-rectifiable of class 2 for every compact
set K ⊆ Rn+1.

(2) For Hn a.e. p ∈ ∂Ω,

Tann(Hn x ∂Ω, p) = Tan(∂Ω, p) = νΩ(p)
⊥.

(3) For every p ∈ ∂v+Ω,

Tann+1(Ln+1 xΩ, p) = Tan(Ω, p) = {v ∈ Rn+1 : v • νΩ(p) ≤ 0}.

Proof. Suppose Ω = F (Ω′), where Ω′ and F are as in definition 5.3. Clearly,
F (∂Ω′) = ∂Ω and F (∂v+Ω

′) = ∂v+Ω. Therefore, assertion (1) follows from theorem
2.16, theorem 7.6, and remark 7.7.

If p ∈ ∂v+Ω, we have Tan(∂Ω, p) ⊆ νΩ(p)
⊥; since Tann(Hn x ∂Ω, p) ⊆ Tan(∂Ω, p)

for every p ∈ ∂Ω and Tann(Hn x ∂Ω, p) is an n-dimensional plane for Hn a.e.
p ∈ ∂Ω, we obtain (2). Finally it follows from definitions that Tan(Ω, p) = {v ∈
Rn+1 : v • νΩ(p) ≤ 0} and Tann+1(Ln+1 xΩ, p) = {v ∈ Rn+1 : v • νΩ(p) ≤ 0} for
every p ∈ ∂v+Ω. �

By lemma 5.2 the map νΩ is Hn x ∂Ω-approximately differentiable with a sym-
metric approximate differential apDνΩ(x) at Hn a.e. x ∈ ∂Ω. Consequently we
introduce the following definition.
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Definition 5.6. (Approximate principal curvatures). Suppose Ω ⊆ Rn+1 is
a W 2,n-domain. The approximate principal curvatures of Ω are the R-valued
(Hn x ∂Ω)-measurable maps

χΩ,1, . . . , χΩ,n,

defined so that χΩ,1(p) ≤ . . . ≤ χΩ,n(p) are the eigenvalues of apDνΩ(p) for Hn

a.e. p ∈ ∂Ω.

We prove now the main structure theorem for the unit normal bundle nor(Ω) of
a W 2,n-domain.

Theorem 5.7 If Ω ⊆ Rn+1 is a W 2,n-domain then the following statements hold.

(1) Hn(νΩ(Z)) = 0, whenever Z ⊆ ∂v+Ω with Hn(Z) = 0.
(2) Hn

(
nor(Ω) \ νΩ(∂v+Ω)

)
= 0.

(3) κΩ,i(x, u) = χΩ,i(x) for every i = 1, . . . , n and for Hn a.e. (x, u) ∈ nor(Ω).
In particular, κΩ,i(x, u) <∞ for Hn a.e. (x, u) ∈ nor(Ω).

(4) If ∂Ω is compact, then Hn(nor(Ω)) < ∞ and there exists a unique
Legendrian cycle T of Rn+1 such that

T = (Hn x nor(Ω)) ∧ η,

where η is a Hn x nor(Ω) measurable n-vectorfield such that

|η(x, u)| = 1, η(x, u) is simple,

Tann(Hn x nor(Ω), (x, u)) is associated with η(x, u)

and

〈
[∧

nπ0
]
(η(x, u)) ∧ u,E′〉 > 0

for Hn a.e. (x, u) ∈ nor(Ω). In this case, η = ζ1 ∧ . . . ∧ ζn, where

ζi =

(
1√

1 + κ2Ω,i

τi,
κΩ,i√
1 + κ2Ω,i

τi

)
for i = 1, . . . , n

and τ1(x, u), . . . , τn(x, u) are an orthonormal basis of u⊥ such that τ1(x, u)∧
. . . ∧ τn(x, u) ∧ u = E for Hn a.e. (x, u) ∈ nor(Ω).

Proof. Suppose Ω = F (Ω′), where Ω′ and F are as in definition 5.3. We recall the
definition of ΨF from (2.13) and notice that

ΨF (nor(Ω
′)) = nor(Ω) (5.1)

by [41, Lemma 2.1]. Since F (∂v+Ω
′) = ∂v+Ω, we readily infer from (5.1) that

ΨF (x, νΩ′(x)) = (F (x), νΩ(F (x))) for every x ∈ ∂v+Ω
′
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and

ΨF

(
νΩ′(F−1(S))

)
= νΩ(S) for every S ⊆ ∂v+Ω. (5.2)

To prove the assertions in (1) and (2) we notice, firstly, that they are true for
Ω′ as a consequence of lemma 3.5 and (3.6) of lemma 3.8; then we apply (5.1) and
(5.2).

To prove (3) we first employ lemma 5.2 to find a countable family Xi ⊆ ∂v+Ω
such that Hn

(
∂Ω \

⋃∞
i=1Xi

)
= 0 and Lip(νΩ|Xi) < ∞ for every i ≥ 1; then we

define Yi to be the set of x ∈ Xi such that νΩ is Hn x ∂Ω approximately differ-
entiable at x, Tann(Hn x ∂Ω, x) and Tann(Hn xnor(Ω), νΩ(x)) are n-dimensional
planes, and Θn(Hn x ∂Ω\Xi, x) = 0. We notice that νΩ|Xi is bi-lipschitz and, since
Tann(Hn x nor(Ω), (x, u)) is an n-dimensional plane for Hn a.e. (x, u) ∈ nor(Ω), we
conclude that

Hn(Xi \ Yi) = 0 for every i ≥ 1.

It follows from (1) and (2) that

Hn
(
nor(Ω) \

⋃∞
i=1 νΩ(Yi)

)
= 0. (5.3)

We fix now x ∈ Yi. Then there exists a map g : Rn+1 → Rn+1 ×Rn+1 pointwise
differentiable at x such that Θn(Hn x ∂Ω \ {g = νΩ}, x) = 0 and apDνΩ(x) =
Dg(x)|Tann(Hn x ∂Ω, x); noting that apDνΩ(x) is injective, g|Xi ∩ {g = νΩ} is
bi-lipschitz and

Tann(Hn x ∂Ω, x) = Tann(Hn xXi ∩ {g = νΩ}, x),

we readily infer by [40, Lemma B.2] that

apDνΩ(x)[Tan
n(Hn x ∂Ω, x)] = Tann(Hn x nor(Ω), νΩ(x)).

Henceforth, if τ1, . . . , τn is an orthonormal basis of Tann(Hn x ∂Ω, x) with
apDνΩ(x)(τi) = χΩ,i(x)τi for i = 1, . . . , n, we conclude that{(

1√
1 + χΩ,i(x)2

τi,
χΩ,i(x)√

1 + χΩ,i(x)2
τi

)
: i = 1, . . . , n

}

is an orthonormal basis of Tann(Hn xnor(Ω), νΩ(x)). Since x is arbitrarily chosen
in Yi, thanks to (5.3), we deduce from the uniqueness stated in lemma 2.11 that

κΩ,i(x, u) = χΩ,i(x) for Hn a.e. (x, u) ∈ nor(Ω).

Finally, we prove (4). By lemma 2.11 we can choose maps τ1, . . . , τn defined Hn

a.e. on nor(Ω′) such that τ1(x, u), . . . , τn(x, u), u is an orthonormal basis of Rn+1,

τ1(x, u) ∧ · · · τn(x, u) ∧ u = e1 ∧ · · · ∧ en+1 for Hna.e. (x, u) ∈ nor(Ω′) (5.4)

and the vectors

ζ ′i(x, u) =

(
1√

1 + κΩ′,i(x, u)2
τi(x, u),

κΩ′,i(x, u)√
1 + κΩ′,i(x, u)2

τi(x, u)

)
, i = 1, . . . , n,
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form an orthonormal basis of Tann(Hn xnor(Ω′), (x, u)) forHn a.e. (x, u) ∈ nor(Ω′).
Then we define

η′ = ζ ′1 ∧ · · · ∧ ζ ′n
and notice that

|η′(x, u)| = 1, η′(x, u) is simple,

Tann(Hn x nor(Ω′), (x, u)) is associated with η′(x, u)

and (see (2.2) and (2.5))

〈
[∧

nπ0
]
(η′(x, u)) ∧ u,E′〉 > 0 (by 5.4) (5.5)

for Hn a.e. (x, u) ∈ nor(Ω′). If p ∈ ∂Ω′, ε> 0, ν ∈ Sn, U ⊆ ν⊥ is a bounded open
set with 0 ∈ U and f ∈W 2,n(U) is a continuous function with f(0) = 0 such that

{p+ b+ τν : b ∈ U, −ε < τ ≤ f(b)} = Ω′ ∩ CU,ε,

where CU,t = {p+ b+ τν : b ∈ U, −t < τ < t} for each 0 < t ≤ ∞, then we observe
that

Nf = nor(Ω′) ∩ (CU,ε × Sn),

where Nf = nor(Ef ) ∩ (CU,∞ × Sn) and Ef = {p + b + τν : b ∈ U, −∞ < τ ≤
f(b)}. It follows from (5.5) and theorem 3.9 that η′|

[
nor(Ω′) ∩ (CU,ε × Sn)

]
is

Hn almost equal to a Borel n-vectorfield defined over nor(Ω′) ∩ (CU,ε × Sn) and
(Hn x

[
nor(Ω′) ∩ (CU,ε × Sn)

]
) ∧ η′ is an n-dimensional Legendrian cycle of CU,ε.

Henceforth, we define the integer multiplicity locally rectifiable n-current

T ′ =
(
Hn x nor(Ω′)

)
∧ η′

and we conclude by lemma 2.5 that T
′
is a Legendrian cycle of Rn+1.

We define now ψ = ΨF |nor(Ω′) and recalling (5.1) and noting that

apDψ(ψ−1(y, v)) = DΨF (ψ
−1(y, v)) (5.6)

for Hn a.e. (y, v) ∈ nor(Ω), we define

η(y, v) =

[∧
n apDψ(ψ

−1(y, v))
]
η′(ψ−1(y, v))

J
nor(Ω′)
n ψ(ψ−1(y, v))

for Hn a.e. (y, v) ∈ nor(Ω). Since ΨF is a diffeomorphism we have that η(y, v) 6= 0
for Hn a.e. (y, v) ∈ nor(Ω). We now apply [10, 4.1.30] with U, K, W, ξ, G and g
replaced by Rn+1×Rn+1, ∂Ω′×Sn, nor(Ω′), ΨF and ψ respectively. We infer that

(ΨF )#
[
(Hn x nor(Ω′)) ∧ η′

]
=
(
Hn xnor(Ω)

)
∧ η

and that |η(y, v)| = 1 and Tann(Hn x nor(Ω), (y, v)) is associated with η(y, v) for
Hn a.e. (y, v) ∈ nor(Ω). Clearly,

(
Hn x nor(Ω)

)
∧ η is a cycle, and

[(
Hn x nor(Ω)

)
∧
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η
]
xα = 0 by lemma 2.11. Finally, if ∗ is the Hodge-star operator with respect to

E (cf. remark 5.8), since τ1(x, u) ∧ · · · ∧ τn(x, u) = (−1)n (∗u) and

[∧
nπ0
]
(η(ΨF (x, u)))

=
1

J
nor(Ω′)
n ψ(x, u)

(
n∏

i=1

1√
1 + κΩ′,i(x, u)2

)
[
DF (x)(τ1(x, u)) ∧ · · · ∧DF (x)(τn(x, u))

]
=

(−1)n

J
nor(Ω′)
n ψ(x, u)

(
n∏

i=1

1√
1 + κΩ′,i(x, u)2

)[∧
nDF (x)

]
(∗u)

for Hn a.e. (x, u) ∈ nor(Ω′), it follows by remark 5.8 below and (5.1) that either

〈
[∧

nπ0
]
(η(y, v)) ∧ v,E′〉 > 0 for Hn a.e. (y, v) ∈ nor(Ω)

or

〈
[∧

nπ0
]
(η(y, v)) ∧ v,E′〉 < 0 for Hna.e. (y, v) ∈ nor(Ω).

This settles the existence part in statement (4). Uniqueness easily follows from the
defining conditions of T and the representation of η follows from lemma 2.11. �

Remark 5.8. Let ∗ : Rn+1 →
∧

n R
n+1 be the Hodge-star operator, taken with

respect to E ; cf. [10, 1.7.8]. We notice that if u ∈ Sn and τ1, . . . , τn is an orthonormal
basis of u⊥ such that u∧ τ1 ∧ · · · ∧ τn = E, then it follows from the shuffle formula
[10, p. 18] that

∗u = τ1 ∧ · · · ∧ τn.

Using this remark, we prove that if F : Rn+1 → Rn+1 is a diffeomorphism, then
either

〈
[∧

nDF (x)
]
(∗u) ∧ (DF (x)−1)∗(u), E′〉 > 0 for every (x, u) ∈ Rn+1 × Sn

or

〈
[∧

nDF (x)
]
(∗u) ∧ (DF (x)−1)∗(u), E′〉 < 0 for every (x, u) ∈ Rn+1 × Sn.

By contradiction, assume that there exists (x, u) ∈ Rn+1 × Sn such that

〈
[∧

nDF (x)
]
(∗u) ∧ (DF (x)−1)∗(u), E′〉 = 0

and choose an orthonormal basis τ1, . . . , τn of u⊥ such that u ∧ τ1 ∧ · · · ∧ τn =
e1∧· · ·∧en+1. Henceforth, DF (x)(τ1)∧· · ·∧DF (x)(τn)∧ (DF (x)−1)∗(u) = 0 and,
since {DF (x)(τi) : i = 1, . . . n} are linearly independent, we conclude that there
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exists c1, . . . , cn ∈ R such that

(DF (x)−1)∗(u) =
n∑

i=1

ciDF (x)(τi).

Applying DF (x)−1 to both sides and taking the scalar product with u, we get[
DF (x)−1 ◦ (DF (x)−1)∗

]
(u) • u = 0,

whence we infer that (DF (x)−1)∗(u) = 0, a contradiction.

Definition 5.9. Suppose Ω ⊆ Rn+1 is a W 2,n-domain. We denote by NΩ the
Legendrian cycle given by theorem 5.7(4).

Remark 5.10. The proof of theorem 5.7(4) proves that if F : U → V is a C 2-
diffeomorphism between open subsets of Rn+1 and Ω is a bounded W 2,n-domain
such that Ω ⊆ U , then

(ΨF )#(NΩ) = NF (Ω).

Definition 5.11. (r -th elementary symmetric function). Suppose r ∈ {1, . . . , n}.
The r-th symmetric function σr : Rn → R is defined as

σr(t1, . . . , tn) =
1(
n
r

) ∑
λ∈Λn,r

tλ(1) · · · tλ(r),

where Λn,r is the set of all increasing functions from {1, . . . , r} to {1, . . . , n}. We
set

σ0(t1, . . . , tn) = 1 for (t1, . . . , tn) ∈ Rn.

Definition 5.12. (r -th mean curvature function). Suppose Ω ⊆ Rn+1 is a W 2,n-
domain and r ∈ {0, . . . , n}. Then we define the r -th mean curvature function of Ω
as

HΩ,r(z) = σr(χΩ,1(z), . . . , χΩ,n(z))

for Hn a.e. z ∈ ∂Ω.

Lemma 5.13. If Ω ⊆ Rn+1 is a bounded W 2,n-domain and φ is a smooth R-valued
function over Rn+1 × Sn then

[NΩ xϕn−k](φ) =

(
n

k

)∫
∂Ω

HΩ,k(x)φ(x, νΩ(x)) dHn(x) for k = 0, . . . , n.

Proof. We know by theorem 5.7(4) that NΩ = (Hn x nor(Ω))∧(ζ1∧. . .∧ζn). Noting
that

Jnor(Ω)
n π0(x, u) =

n∏
i=1

1√
1 + κΩ,i(x, u)2

for Hn a.e. (x, u) ∈ nor(Ω),
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we employ theorem 5.7(3) to compute

[NΩ xϕn−k](φ) =

(
n

k

)∫
nor(Ω)

Jnor(Ω)
n π0(x, u)φ(x, u)HΩ,k(x) dHn(x, u),

whence we conclude using area formula in combination with theorem 5.7(2) and
lemma 5.5(1). �

Definition 5.14. (r -th total curvature measure). If Ω ⊆ Rn+1 is a bounded
W 2,n-domain and r = 0, . . . , n, we define

Ar(Ω) =

∫
∂Ω

HΩ,r dHn.

Now we can quickly derive the following extension of Reilly’s variational formulae
(cf. [31]) to W 2,n-domain.

Theorem 5.15. Suppose Ω ⊆ Rn+1 is a bounded W 2,n-domain and (Ft)t∈I is a
local variation of Rn+1 with initial velocity vector field V . Then

d

dt
Ak−1(Ft(Ω))

∣∣∣
t=0

= (n− k + 1)

∫
∂Ω

HΩ,k (νΩ • V ) dHn for k = 1, . . . , n

and
d

dt
An(Ft(Ω))

∣∣∣
t=0

= 0. (5.7)

Proof. Combining remark 5.10 and lemma 5.13 we obtain

[
(ΨFt

)#NΩ

]
(ϕn−k+1) = NFt(Ω)(ϕn−k+1) =

(
n

k − 1

)
Ak−1(Ft(Ω))

for k = 1, . . . , n+ 1. Hence we use lemma 2.8 and again lemma 5.13 to compute

d

dt

[
(ΨFt)#NΩ

]
(ϕn−k+1)

∣∣∣
t=0

= k

(
n

k

)∫
∂Ω

(V (x) • νΩ(x))HΩ,k(x) dHn(x)

for k = 1, . . . , n and

d

dt

[
(ΨFt)#NΩ

]
(ϕ0)

∣∣∣
t=0

= 0.

�

Remark 5.16. If Ω is a C 2-domain, then (5.7) follows from the Gauss–Bonnet
theorem. The validity of the Gauss–Bonnet theorem for bounded W 2,n-domains is
an interesting open question, and (5.7) seems to point to a possible positive answer.

The following integral formulae can be easily deduced from theorem 5.15 by a
standard procedure. For the C 2-regular domains these formulae are classic, see [13].
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Corollary 5.17. If Ω ⊆ Rn+1 is a bounded W 2,n-domain and r ∈ {1, . . . , n}
then ∫

∂Ω

HΩ,r−1(x) dHn(x) =

∫
∂Ω

(x • νΩ(x))HΩ,r(x) dHn(x).

Proof. We consider the local variation Ft(x) = et x for (x, t) ∈ Rn × R and we
notice that

Tann(Hn x ∂Ω, x) = Tann(Hn xFt(∂Ω), Ft(x))

νFt(Ω)(Ft(x)) = νΩ(x) and χFt(Ω),i(Ft(x)) = e−tχΩ,i(x)

for Hn a.e. x ∈ ∂Ω and i = 1, . . . , n. Henceforth, we compute by area formula

Ar−1(Ft(Ω)) =

∫
∂Ft(Ω)

HFt(Ω),r−1 dHn

= e−(r−1)t

∫
Ft(∂Ω)

HΩ,r−1(F
−1
t (y)) dHn(y)

= e(n−r+1)t

∫
∂Ω

HΩ,r−1(x) dHn(x)

and we apply theorem 5.15. �

Corollary 5.18. Suppose Ω ⊆ Rn+1 is a bounded W 2,n-domain, k ∈ {1, . . . , n}
and

HΩ,i(z) ≥ 0 for i = 1, . . . , k − 1 and for Hna.e. z ∈ ∂Ω. (5.8)

Then there exists P ⊆ ∂Ω such that Hn(P ) > 0 and HΩ,k(z) 6= 0 for z ∈ P .

Proof. Suppose HΩ,k(z) = 0 for Hn a.e. z ∈ ∂Ω. Then we can employ corollary
5.17 (with r = k) and use (5.8) (for i = k − 1) to infer that HΩ,k−1(z) = 0 for
Hn a.e. z ∈ ∂Ω. Now we repeat this argument with r = k − 1 and i = k − 2 to
infer that HΩ,k−2(z) = 0 for Hn a.e. z ∈ ∂Ω, and we continue until we obtain that
HΩ,0(z) = 0 for Hn a.e. z ∈ ∂Ω, which means Hn(∂Ω) = 0. Since the latter is
clearly impossible, we have proved the assertion. �

6. Sphere theorems for W 2,n-domains

The results in the previous section in combination with the Heintze–Karcher
inequality proved below can be used to generalize classical sphere theorems to
W 2,n-domains.

Theorem 6.1 (Heintze–Karcher inequality). Suppose Ω ⊆ Rn+1 is a bounded and
connected W 2,n-domain such that HΩ,1(z) ≥ 0 for Hn a.e. z ∈ ∂Ω. Then

(n+ 1)Ln+1(Ω) ≤
∫
∂Ω

1

HΩ,1(x)
dLn(x).

Moreover, if HΩ,1(z) ≥ Hn(∂Ω)
(n+1)Ln+1(Ω) for Hn a.e. z ∈ ∂Ω then Ω is a round ball.
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Proof. We define Ω′ = Rn+1\Ω and notice that Ω′ is aW 2,n-domain. Since ∂v+Ω
′ =

∂v+Ω and νΩ′ = −νΩ, it follows from theorem 5.7 that

Hn
(
nor(Ω′) \ {(z,−νΩ(z)) : z ∈ ∂v+Ω}

)
= 0,

and

−χΩ,i(z) = χΩ′,i(z) = κΩ′,i(z,−νΩ(z)) for Hn a.e. z ∈ ∂v+Ω.

Henceforth,

n∑
i=1

κΩ′,i(z, u) = −nHΩ,1(z) ≤ 0 for Hn a.e. (z, u) ∈ nor(Ω′) (6.1)

and we infer from theorem 2.13 and area formula [10, 3.2.20] that

(n+ 1)Ln+1(Ω) ≤
∫
nor(Ω′)

Jnor(Ω′)
n π0(z, u)

n

|
∑n

i=1 κΩ′,i(z, u)|
dHn(z, u)

=

∫
∂Ω

1

HΩ,1(z)
dHn(z). (6.2)

We assume now that HΩ,1(z) ≥ Hn(∂Ω)
(n+1)Ln+1(Ω) for Hn a.e. z ∈ ∂Ω. Then, we

observe that

Hn

({
z ∈ ∂Ω : HΩ,1(z) ≥ (1 + ε)

Hn(∂Ω)

(n+ 1)Ln+1(Ω)

})
= 0 for every ε > 0,

otherwise we would obtain a contradiction with the inequality (6.2) (cf. proof of
[14, Corollary 5.16]). This implies that

HΩ,1(z) =
Hn(∂Ω)

(n+ 1)Ln+1(Ω)
for Hn a.e. z ∈ ∂Ω,

whence we infer that (6.2) holds with equality. Recalling (6.1) we deduce from
theorem 2.13 that Ω must be a round ball. �

Theorem 6.2. If k ∈ {1, . . . , n}, λ ∈ R and Ω ⊆ Rn+1 is a bounded and connected
W 2,n-domain such that

HΩ,i(z) ≥ 0 for i = 1, . . . , k − 1 (6.3)

and

HΩ,k(z) = λ (6.4)

for Hn a.e. z ∈ ∂Ω, then Ω is a round ball.

Proof. Combining theorem 5.17 and divergence theorem for sets of finite perimeter,
(it is clear by lemma 5.5 that Ω is a set of finite perimeter whose reduced boundary
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is Hn almost equal to the topological boundary) we obtain∫
∂Ω

HΩ,k−1 dHn = λ

∫
∂Ω

x • νΩ(x) dHn(x) = λ(n+ 1)Ln+1(Ω) (6.5)

and we infer that λ ≥ 0. Hence we deduce from [14, Lemma 2.2] and corollary 5.18
that

HΩ,1(z) ≥ . . . ≥ HΩ,k−1(z)
1

k−1 ≥ HΩ,k(z)
1
k = λ

1
k > 0 (6.6)

for Hn a.e. z ∈ ∂Ω. By (6.6),∫
∂Ω

HΩ,k−1(z) dHn(z) ≥ λ
k−1
k Hn(∂Ω)

and combining with (6.5) we obtain

λ(n+ 1)Ln+1(Ω) ≥ λ
k−1
k Hn(∂Ω).

Since λ> 0, we obtain from (6.6) that

HΩ,1(z) ≥
Hn(∂Ω)

(n+ 1)Ln+1(Ω)
for Hn a.e. z ∈ ∂Ω (6.7)

and we conclude applying lemma 6.1. �

Remark 6.3. Hypothesis (6.3) in theorem 6.2 can be equivalently replaced by the
following assumption:

∂σk
∂ti

(χΩ,1(z), . . . , χΩ,n(z)) ≥ 0 for i = 1, . . . , n and for Hn a.e. z ∈ ∂Ω. (6.8)

Assume (6.8) in place of (6.5) in theorem 6.2. Then, first we use [38, eq. (1.15)] to
infer that

HΩ,k−1(z) =
1

k

n∑
i=1

∂σk
∂ti

(χΩ,1(z), . . . , χΩ,n(z)) ≥ 0

for Hn a.e. z ∈ ∂Ω. Then, as in (6.5), we deduce that λ ≥ 0. Finally, we employ
[38, Proposition 1.3.2] to infer (6.3).

7. Nabelpunksatz for Sobolev graphs

In this final section, we extend the Nabelpunktsatz to graphs of twice weakly dif-
ferentiable functions in terms of the approximate curvatures of their graphs. In
particular, theorem 7.6 provides a general version of the Nabelpunktsatz for W 2,1-
graphs. In view of well-known examples of convex functions, this result is sharp;
see remark 7.8. In this section we use the symbols Di and D2

ij (respectively Di and

D2
ij) for the distributional partial derivatives of a Sobolev function (respectively

the classical partial derivatives of a function) with respect to the standard base
e1, . . . , en of Rn .
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Remark 7.1. Let U ⊆ Rn be a connected open and f ∈ C2(U). We define G =
{(x, f(x)) : x ∈ U}, and ν : G→ Sn ⊆ Rn+1 so that

ν(f(x)) =
(−∇f(x), 1)√
1 + |∇f(x)|2

(7.1)

for every x ∈ U . Differentiating (7.1) we get

Dν(f(x))(v,Df(x)(v)) =
(−D(∇f)(x)(v), 0)√

1 + |∇f(x)|2
− ∇f(x) •D(∇f)(x)(v)

1 + |∇f(x)|2
ν(f(x))

for every v ∈ Rn. We recall that G is umbilical if and only if there exists a function
λ : G→ R such that

Dν(z) = λ(z)IdTan(G,z) ∀z ∈ G.

Therefore, noting that Tan(G, f(x)) = {(v,Df(x)(v)) : v ∈ Rn}, we conclude that
G is umbilical if and only if

λ(f(x))
[
ei • ej +Dif(x)Djf(x)

]
= −

D2
ijf(x)√

1 + |∇f(x)|2
(7.2)

for every x ∈ U and for every i, j = 1, . . . , n. It follows from [42] that if U ⊆ Rn

is a connected open set, f ∈ C2(U) and λ : G → R is a function such that (7.2)
holds for every x ∈ U , then either f(U) is contained in an n-dimensional plane or
f(U) is contained in an n-dimensional sphere.

The first result of this section generalizes remark 7.1 to W 2,1-functions. Suppose
U ⊆ Rn is an open set, ν ∈ Sn−1 and πν is the orthogonal projection onto ν⊥.
Then we define

Uν = πν [U ]

and

Uν
y = {t ∈ R : y + tν ∈ U} ⊆ R for y ∈ Uν .

Notice that Uν is an open subset of ν⊥ and Uν
y is an open subset of R for every

y ∈ Uν .

Lemma 7.2. Suppose U ⊆ Rn be an open set, g ∈ W 1,1
loc (U) and k ∈ {1, . . . , n}

such that

Dkg(x) = 0 for Ln a.e. x ∈ U.

Then for Ln−1 a.e. y ∈ Uek the function mapping t ∈ Uek
y into g(y + tek) is L1

almost equal to a constant function.
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Proof. It follows from [46, Theorem 2.1.4] that there exists a representative g̃ of g
such that the restriction of g̃ on Uek

y is absolutely continuous and

Dkg(y + tek) =
d

dt
g̃(y + tek) for L1a.e. t ∈ Uek

y

for Ln−1 a.e. y ∈ Uek . It follows from the hypothesis that

d

dt
g̃(y + tek) = 0

for L1 a.e. t ∈ Uek
y and for Ln−1 a.e. y ∈ Uek , and we readily obtain the conclusion

from the absolute continuity hypothesis of g̃. �

We prove now the first result of this section.

Theorem 7.3. Suppose U ⊆ Rn is a connected open set, f ∈ W 2,1
loc (U) and µ :

U → R is a function such that

µ(x)
[
ei • ej +Dif(x)Djf(x)

]
= −

D2
ijf(x)√

1 + |∇f(x)|2
(7.3)

for Ln a.e. x ∈ U and for every i, j = 1, . . . , n.
Then, either f is Ln almost equal to a linear function on U , or there exists an

n-dimensional sphere S in Rn+1 such that f(x) ∈ S for Ln a.e. x ∈ U .

Proof. Recall the diffeomorphism ψ from remark 3.2 and define η = ψ ◦ ∇f . By
the classical chain rule for Sobolev maps (cf. [11]), η ∈W 1,1

loc (U,R
n+1) and

Dη(x)(v) =
[
Dψ(∇f(x)) ◦D(∇f)(x)

]
(v)

=
(−D(∇f)(x)(v), 0)√

1 + |∇f(x)|2
− ∇f(x) •D(∇f)(x)(v)

1 + |∇f(x)|2
η(x)

for Ln a.e. x ∈ U . In particular, noting that η(x) • (ej ,Djf(x)) = 0 for every
j = 1, . . . , n and for Ln a.e. x ∈ U , we employ the umbilicality condition to obtain

Diη(x) • (ej ,Djf(x)) = −
D2

ijf(x)√
1 + |∇f(x)|2

= µ(x)(ei,Dif(x)) • (ej ,Djf(x))

for Ln a.e. x ∈ U and for every i, j = 1, . . . , n. Consequently, for every i = 1, . . . , n
and for Ln a.e. x ∈ U there exists λi(x) ∈ R such that

Diη(x)− µ(x)(ei,Dif(x)) = λi(x)η(x). (7.4)

On the other hand, since η is a unit-length vector, we see (again from the chain rule
for Sobolev maps) that η(x) •Diη(x) = 0 for Ln a.e. x ∈ U and for i = 1, . . . , n.
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Therefore, we infer from (7.4) that λi(x) = 0 and

Diη(x) = µ(x)(ei,Dif(x)) = µ(x)Dif(x) (7.5)

for Ln a.e. x ∈ U . For k = 1, . . . , n let gk ∈W 1,1
loc (U) be given by

gk = − Dkf√
1 + |∇f |2

,

and we notice from (7.5) that

Digj = 0, whenever i, j ∈ {1, . . . , n} and i 6= j, (7.6)

Digi = µ, whenever i ∈ {1, . . . , n}. (7.7)

We fix now an open cube Q ⊆ U with sides parallel to the coordinate axes,
φ ∈ C∞

c (Q) and k = 1, . . . , n, and we prove that∫
Q

µDkφdLn = 0. (7.8)

Choose j ∈ {1, . . . , n} with k ≠ j. Since by (7.6) we have that Dkgj = 0, it follows
from lemma 7.2 that for Ln−1 a.e. y ∈ Uek there exists vj(y) ∈ R such that

gj(y + tek) = vj(y) for L1 a.e. t ∈ Uek
y .

Now we use (7.7) to obtain∫
Q

µDkφdLn =

∫
Q

Djgj DkφdLn

= −
∫
Q

gj Dj

(
Dkφ

)
dLn

= −
∫
Qek

vj(y)

∫
Qy

ek

Dk

(
Djφ

)
(y + tek) dL1(t) dLn−1(y) = 0,

where the last equality follows from the fact that the function mapping t ∈ Qek
y

into Djφ(y + tek) has compact support in Qek
y .

Since (7.8) holds for every open cube Q with sides parallel to the coordinate axes
and for every φ ∈ C∞

c (Q), and since U is connected, we infer from [10, 4.1.4] that

µ is Ln almost equal to a constant function on U. (7.9)

Since U is connected, we combine (7.9) and (7.5) to infer that there exists c ∈ R
and w ∈ Rn+1 such that

η(x)− cf(x) = w for Ln a.e. x ∈ U.
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If c ≠ 0 the last equation evidently implies that f(x) ∈ ∂Bn+1(−w/c, 1/|c|) for Ln

a.e. x ∈ U . If c=0, we have that w • en+1 = (1 + |∇f |2)−1/2 and

Dif(x) = − w • ei
w • en+1

for Ln a.e. x ∈ U and i = 1, . . . , n.

This implies that f is Ln almost equal to a linear function on U, since U is
connected. �

Definition 7.4. Suppose X ⊆ Rn+1 is Hn-measurable and Hn-rectifiable of
class 2. We say that X is approximate totally umbilical if there exists a Hn xX-
measurable map ν such that ν(x) ∈ Norn(Hn xX,x)∩Sn and there exists a function
µ : X → R such that

apDν(x)(τ) = µ(x)τ for every τ ∈ Tann(Hn xX,x), (7.10)

for Hn a.e. x ∈ X (keep in mind lemma 5.2).

Definition 7.5. (Lusin (N) condition). Suppose U ⊆ Rn is open and g : U → Rk

(k ≥ n). We say that g satisfies the Lusin’s condition (N) if and only if Hn(g(Z)) =
0 for every Z ⊆ U with Ln(Z) = 0.

We are now ready to prove the second result of this section.

Theorem 7.6. Suppose U ⊆ Rn is a bounded open set, f ∈ W 2,1(U), f satisfies
the Lusin’s condition (N) and G = f(U).

Then G is Hn-rectifiable of class 2. Moreover, if G is approximate totally umbil-
ical then, up to a Hn-negligible set, either G is a subset of an n-dimensional plane
or a subset of an n-dimensional sphere.

Proof. By [6, Theorem 13] and [10, 2.10.19(4), 2.10.43] we can find countably many
functions g1, g2, . . . ∈ C2(Rn) such that Ln(U \

⋃∞
i=1{gi = f}) = 0 and Lip(gi) <∞

for every i ≥ 1. Henceforth, thanks to the Lusin’s condition (N), we readily infer
that G is Hn-rectifiable of class 2. We define Di as the set of x ∈ {gi = f} such
that

Θn(Ln xU \ {gi = f}, x) = 0, Dgi(x) = Df(x)

and Tann(Hn xG, f(x)) is an n-dimensional plane. Since Dgi(x) = apDf(x) for
every x ∈ Di, it follows from [10, 2.10.19(4), 3.2.19] and lemma 2.19 that

Ln({gi = f} \Di) = 0 for every i ≥ 1.

Since Tann(Ln x{gi = f}, x) = Rn for every x ∈ Di, and noting that gi : R
n →

gi(R
n) is a bi-lipschitz homeomorphism, we use [40, Lemma B.2] to conclude

Df(x)[Rn] = Dgi(x)[Tan
n(Ln x{gi = f}, x)] ⊆ Tann(Hn xG, f(x))

for every x ∈ Di. Since Df(x) is injective whenever it exists, we conclude that

Df(x)[Rn] = Tann(Hn xG, f(x))
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and

ψ(∇f(x)) ∈ Norn(Hn xG, f(x))

for every x ∈ Di and i ≥ 1. Let D =
⋃∞

i=1Di and notice that Hn(G \ f(D)) = 0
(again by Lusin’s condition (N)). Let ν be the Hn xG-measurable map defined by

ν = ψ ◦∇f ◦ (π|G),

where π : Rn × R → Rn is the orthogonal projection onto Rn . We observe that
if z ∈ f(Di) and Θn(Hn xG \ f(Di), z) = 0, then ν is Hn xG-approximately
differentiable at z (since ν|f(Di) = (ψ ◦ ∇gi ◦ π)|f(Di)) and

apDν(z) = D(ψ ◦ ∇gi ◦ π)(z)
= D(ψ ◦ ∇gi)(π(z)) ◦

(
π|Tann(Hn xG, z)

)
= apD(ψ ◦∇f)(π(z)) ◦

(
π|Tann(Hn xG, z)

)
= D(ψ ◦∇f)(π(z)) ◦

(
π|Tann(Hn xG, z)

)
,

whence we infer

apDν(z) ◦Df(π(z)) = D(ψ ◦∇f)(π(z)). (7.11)

By [10, 2.10.19(4)] we conclude that (7.11) is true for Hn a.e. z ∈ G.
If G is approximate totally umbilical then it is easy to see that the unit normal

vector field ν defined above fulfils the umbilicalilty condition in (7.10) with some
function µ. Henceforth,

µ(f(x))(ei • ej +Dif(x)Djf(x)) =
(
apDν(f(x)) ◦Df(x)

)
(ei) • (ej ,Djf(x))

= Di(ψ ◦ ∇f)(x) • (ej ,Djf(x))

= −
D2

ijf(x)√
1 + |∇f(x)|2

for every i, j = 1, . . . , n and for Ln a.e. x ∈ U . By theorem 7.3 and the Lusin’s
condition (N), we deduce that, up to a Hn-negligible set, G is either a subset of an
n-dimensional plane or a subset of an n-dimensional sphere of Rn+1. �

Remark 7.7. If f ∈ W 2,p(U) with p > n
2 , then the Sobolev embedding theorem

[11, Theorem 7.26] ensures that f ∈W 1,p∗
(U) with p∗ > n. Henceforth, f satisfies

the Lusin’s condition (N) by [23, Theorem 1.1].

Remark 7.8. It is easy to find convex functions f ∈ C1,α(Rn) such that the
approximate principal curvatures of the graph are zero Hn almost everywhere and
the conclusion of theorem 7.6 fails. (Notice that the graph is Hn-rectifiable of class
2 and f satisfies the Lusin’s condition (N).) Indeed the gradient of these functions
are continuous maps of bounded variation whose distributional derivative is not
a function. An example of such functions is given by the primitive of the ternary
Cantor function.
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Appendix A. Area of the proximal unit normal bundle

Lemma A.1. If C ⊆ Rn+1 is a closed set and M ⊆ Rn+1 is a k-dimensional
submanifold of class 2 then there exists R ⊆M ∩ C such that:

(1) nor(C) ∩ (R× Sn) ⊆ nor(M);
(2) Hk

(
(M ∩ C) \R

)
= 0.

Proof. See the proof of [40, Lemma 6.1]. �

Suppose C ⊆ Rn+1 is closed with Hn(C) < ∞ and Σ = π0(nor(C)). It follows
from [25] that Σ is Hn-rectifiable of class 2. We fix a Hn xΣ-measurable map
ν : Σ → Sn such that ν(a) ∈ Norn(Hn xΣ, a) for Hn a.e. a ∈ Σ and we notice
that it is Hn xΣ-approximately differentiable at Hn a.e. a ∈ Σ with a symmetric
approximate differential apDν(a) by lemma 5.2. We denote by

χΣ,1(a) ≤ . . . ≤ χΣ,n(a)

the eigenvalues of apDν(a) and we define (cf. definition 2.12)

E = {(x, u) ∈ nor(C) : κC,n(x, u) <∞}.

Lemma A.2. If A ⊆ Rn+1 is a Borel set, then

Hn(E ∩ (A× Sn)) ≥
∫
Σ∩A

n∏
`=1

√
1 + χΣ,`(x)2 dHn(x).

Proof. Let {Σi}i≥1 be a sequence of C 2-hypersurfaces such that Hn(Σ\
⋃∞

i=1 Σi) =
0. Employing lemma A.1 we can find a disjointed sequence of Borel subsets {Ri}i≥1

of Σi ∩ Σ such that

Hn
(
Σ \

⋃∞
i=1Ri

)
= 0 and nor(C) ∩ (Ri × Sn) ⊆ nor(Σi)

for every i ≥ 1. It follows from [10, 2.10.19(4)] that

Tann
(
Hn x(nor(C) ∩ (Ri × Sn)), (x, u)

)
= Tan(nor(Σi), (x, u)) (A.1)

for Hn a.e. (x, u) ∈ nor(C) ∩ (Ri × Sn) (recall that nor(Σi) ∩ (Σi × Sn) is an n-
dimensional submanifold of Rn+1×Sn of class 1). Since π0

(
Tan(nor(Σi), (x, u))

)
=

Tan(Σi, x) is an n-dimensional linear space for every (x, u) ∈ nor(Σi) ∩ (Σi × Sn),
we deduce from (A.1) and [14, Lemma 3.9] that

κC,n(a, u) <∞ for Hn a.e. (a, u) ∈
n⋃

i=1

[
nor(C) ∩ (Ri × Sn)

]
.

For each i ≥ 1 let χΣi,1 ≤ . . . ≤ χΣi,n be the principal curvatures of Σi, and we
notice that

Jnor(Σi)
n π0(x, u) =

n∏
`=1

1√
1 + χΣi,`(x)

2
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for (x, u) ∈ nor(Σi) ∩ (Σi × Sn). Applying area formula we can estimate

Hn(E ∩ (A×Sn))

≥
∞∑
i=1

Hn(nor(C) ∩ ((A ∩Ri)× Sn))

=
∞∑
i=1

∫
nor(C)∩((A∩Ri)×Sn)

Jnor(Σi)
n π0(x, u)

n∏
`=1

√
1 + χΣi,`(x)

2 dHn(x, u)

≥
∞∑
i=1

∫
A∩Ri

n∏
`=1

√
1 + χΣi,`(x)

2 dHn(x).

From the proof of lemma 5.2 we obtain that if i ≥ 1 then

n∏
`=1

√
1 + χΣi,`(x)

2 =
n∏

`=1

√
1 + χΣ,`(x)2 for Hn a.e. x ∈ Σ ∩ Σi.

Henceforth, we conclude

Hn(E ∩ (A× Sn)) ≥
∫
A∩Σ

n∏
`=1

√
1 + χΣ,`(x)2 dHn(x).

�

Lemma A.3. There exist a smooth two-dimensional submanifold M ⊆ R3 with
bounded mean curvature such that H2 xM is a Radon measure over R3, and a set
P ⊆ R3 × S2 such that H2(P ) > 0 and

H2
(
nor(M) ∩ {(x, u) ∈ Rn+1 × Sn : |x− b| < r, |u− υ| < r}

)
= ∞

for every (b, υ) ∈ P and for every r > 0.

Proof. By [19, Example 10.8 and Remark 10.10] (see also [18, 6.1]) there exists
a smooth two-dimensional submanifold M ⊆ R3 such that H2 xM is a Radon
measure, and if χ1 ≤ χ2 are the principal curvatures of M with respect to a
unit-normal vector field η :M → Sn then

|χ1(a) + χ2(a)| ≤ 1 for every a ∈M

and there exists a Borel set B ⊆M \M such that∫
M∩B(b,r)

(
χ2
1 + χ2

2

)q/2
dH2 = ∞ for every 1 < q <∞, b ∈ B and r > 0.

Henceforth, for every b ∈ B and r > 0,

+∞ =

∫
M∩B(b,r)

(
χ2
1 + χ2

2

)
dH2 ≤ H2(M ∩B(b, r))− 2

∫
M∩B(b,r)

χ1 χ2 dH2
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and ∫
M∩B(b,r)

χ1 χ2 dH2 = −∞.

By lemma A.2 we infer that

H2
(
nor(M) ∩ (B(b, r)× Sn)

)
≥
∫
M∩B(b,r)

2∏
`=1

(1 + χ`(x)
2)1/2 dHn(x) = ∞

for every r > 0 and b ∈ B.
Now the compactness of Sn guarantees that for each b ∈ B there exists υ(b) ∈ Sn

such that

H2
(
nor(M) ∩ {(x, u) ∈ Rn+1 × Sn : |x− b| < r, |u− υ(b)| < r}

)
= ∞

for each r > 0. Henceforth, setting P = {(b, υ(b)) : b ∈ B} we have that H2(P ) > 0
and the proof is complete. �

Remark A.4. In particular, nor(M) is a Legendrian rectifiable set by lemma 2.11,
but it cannot be the carrier an integer-multiplicity rectifiable n-current of R3×S2.
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