Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:52:34.310Z Has data issue: false hasContentIssue false

Brain networks require a network-conscious psychopathological approach

Published online by Cambridge University Press:  06 March 2019

Achille Pasqualotto*
Affiliation:
Faculty of Arts and Social Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey Division of Psychology, School of Social Sciences, Nanyang Technological University, 637332Singapore. achille@ntu.edu.sg

Abstract

In experimental psychology and neuroscience, technological advances and multisensory research have contributed to gradually dismiss a version of reductionism. Empirical results no longer support a brain model in which distinct “modules” perform discrete functions, but rather, a brain of partially overlapping networks. A similarly changed brain model is extending to psychopathology and clinical psychology, and partly accounts for the problems of reductionism.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. L. (2010) Neural reuse: A fundamental organizational principle of the brain. Behavioral and Brain Sciences 33:245–66.Google Scholar
Beer, A. L., Plank, T. & Greenlee, M. W. (2011) Diffusion tensor imaging shows white matter tracts between human auditory and visual cortex. Experimental Brain Research 213:299308.Google Scholar
Bressler, S. L. & Menon, V. (2010) Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences 14:277–90.Google Scholar
Chiao, J. Y. (2009) Cultural neuroscience: A once and future discipline. Progress in Brain Research 178:287304.Google Scholar
Convento, S., Vallar, G., Galantini, C. & Bolognini, N. (2013) Neuromodulation of early multisensory interactions in the visual cortex. Journal of Cognitive Neuroscience 25:685–96.Google Scholar
De Meo, R., Murray, M. M., Clarke, S. & Matusz, P. J. (2015) Top-down control and early multisensory processes: Chicken vs. egg. Frontiers in Integrative Neuroscience 9: article 17. doi: 10.3389/fnint.2015.00017. Available at: https://www.frontiersin.org/articles/10.3389/fnint.2015.00017/full.Google Scholar
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Schlaggar, B. L. & Petersen, S. E. (2009) Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology 5:e1000381. (Online publication). Available at: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000381.Google Scholar
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1:147.Google Scholar
Fodor, J. A. (1985) The modularity of mind. Behavioral and Brain Sciences 8(1):15.Google Scholar
Fornito, A., Zalesky, A. & Breakspear, M. (2015) The connectomics of brain disorders. Nature Reviews Neuroscience 16:159–72.Google Scholar
Foxe, J. J. & Schroeder, C. E. (2005) The case for feedforward multisensory convergence during early cortical processing. NeuroReport 16:419–23.Google Scholar
Furlan, M., Wann, J. P. & Smith, A. T. (2013) A representation of changing heading direction in human cortical areas pVIP and CSv. Cerebral Cortex 24:2848–58.Google Scholar
Gallese, V. (2008) Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience 3:317–33.Google Scholar
Ghazanfar, A. A. & Schroeder, C. E. (2006) Is neocortex essentially multisensory? Trends in Cognitive Science 10:278–85.Google Scholar
Hacking, I. (1999) The social construction of what? Harvard University Press.Google Scholar
Han, S., Northoff, G., Vogeley, K., Wexler, B. E., Kitayama, S. & Varnum, M. E. (2013) A cultural neuroscience approach to the biosocial nature of the human brain. Annual Review of Psychology 64:335–59.Google Scholar
Immordino-Yang, M. H. & Damasio, A. (2007) We feel, therefore we learn: The relevance of affective and social neuroscience to education. Mind, Brain, and Education 1:310.Google Scholar
Johnstone, L. & Dallos, R. (2013) Formulation in psychology and psychotherapy: Making sense of people's problems. Routledge.Google Scholar
Kanwisher, N., McDermott, J. & Chun, M. M. (1997) The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience 17:4302–11.Google Scholar
Kauffman, T., Hamilton, R., Keenan, J. P., Warde, A. & Pascual-Leone, A. (2000) The role of visual cortex in tactile Braille reading: The early blind, the sighted, and the blindfolded. Annals of Neurology 48:418–19.Google Scholar
Kawamichi, H., Kitada, R., Yoshihara, K., Takahashi, H. K. & Sadato, N. (2015) Interpersonal touch suppresses visual processing of aversive stimuli. Frontiers in Human Neuroscience 9: article 164. (Online article). doi: 10.3389/fnhum.2015.00164. Available at: https://www.frontiersin.org/articles/10.3389/fnhum.2015.00164/full.Google Scholar
Kitada, R., Johnsrude, I. S., Kochiyama, T. & Lederman, S. J. (2010) Brain networks involved in haptic and visual identification of facial expressions of emotion: An fMRI study. Neuroimage 49:1677–89.Google Scholar
Kitayama, S. & Park, J. (2010) Cultural neuroscience of the self: Understanding the social grounding of the brain. Social Cognitive and Affective Neuroscience 5:111–29.Google Scholar
Le Bihan, D. (2003) Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience 4:469–80.Google Scholar
Lederman, S. J., Klatzky, R. L., Abramowicz, A., Salsman, K., Kitada, R. & Hamilton, C. (2007) Haptic recognition of static and dynamic expressions of emotion in the live face. Psychological Science 18:158–64.Google Scholar
Lloyd, D. (2000) Virtual lesions and the not so-modular brain. Journal of the International Neuropsychological Society 6:627–35.Google Scholar
Loomis, J. M., Klatzky, R. L. & Lederman, S. J. (1991) Similarity of tactual and visual picture recognition with limited field of view. Perception 20:167–77.Google Scholar
Loriedo, C. (2005) Resilienza e fattori di protezione nella psicoterapia familiare sistemica [Resilience and protection factors in the Systemic family psychotherapy]. Rivista di Psicoterapia Relazionale 21:1000–24.Google Scholar
Luria, A. R. (2012) Higher cortical functions in man. Springer Science and Business Media.Google Scholar
Macaluso, E. & Driver, J. (2005) Multisensory spatial interactions: A window onto functional integration in the human brain. Trends in Neurosciences 28:264–71.Google Scholar
Murphy, D. (2005) Psychiatry in the scientific image. MIT Press.Google Scholar
Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., Schroeder, C. E. & Foxe, J. J. (2005) Grabbing your ear: Rapid auditory–somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex 15:963–74.Google Scholar
Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. (2006) Beyond mind-reading: Multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10:424–30.Google Scholar
Pascual-Leone, A. & Hamilton, R. (2001) The metamodal organization of the brain. Progress in Brain Research 134:427–45.Google Scholar
Pasqualotto, A. (2016) Multisensory integration substantiates distributed and overlapping neural networks. Behavioral and Brain Sciences 39:127–28.Google Scholar
Pasqualotto, A., Dumitru, M. L. & Myachykov, A. (2016) Editorial: Multisensory integration: Brain, body, and world. Frontiers in Psychology 6: article 2046. (Online publication). doi:10.3389/fpsyg.2015.02046. Available at: https://www.frontiersin.org/articles/10.3389/fpsyg.2015.02046/full.Google Scholar
Pasqualotto, A., Finucane, C. M. & Newell, F. N. (2013) Ambient visual information confers a context-specific, long-term benefit on memory for haptic scenes. Cognition 128:363–79.Google Scholar
Pasqualotto, A. & Proulx, M. J. (2015) Two-dimensional rubber-hand illusion: The Dorian Gray hand illusion. Multisensory Research 28:101–10.Google Scholar
Stein, B. E. (2012) The new handbook of multisensory processing. MIT Press.Google Scholar
Steinberg, L. (2008) A social neuroscience perspective on adolescent risk-taking. Developmental Review 28:78106.Google Scholar
Tomm, K. (1984) One perspective on the Milan systemic approach: Part I. Overview of development, theory and practice. Journal of Marital and Family Therapy 10:113–25.Google Scholar
Uesaki, M., Takemura, H. & Ashida, H. (2018) Computational neuroanatomy of human stratum proprium of interparietal sulcus. Brain Structure and Function 223:489507.Google Scholar
Wan, X., Zhou, X., Woods, A. T. & Spence, C. (2015) Influence of the glassware on the perception of alcoholic drinks. Food Quality and Preference 44:101–10.Google Scholar
Whitfield, P. (2009) Shakespeare, pedagogy and dyslexia. Voice and Speech Review 6:254–62.Google Scholar
Whitfield, P. (2016) A facilitation of dyslexia through a remediation of Shakespeare's text. Research in Drama Education: The Journal of Applied Theatre and Performance 21:385400.Google Scholar
Whitfield, P. (2017) The micro grasp and macro gestus strategy as a facilitation of dyslexia in actor-training: Reconstructing the written text when performing Shakespeare. Theatre, Dance and Performance Training 8:329–47.Google Scholar
Woolgar, A., Jackson, J. & Duncan, J. (2016) Coding of visual, auditory, rule and response information in the brain: Ten years of multivoxel pattern analysis. Journal of Cognitive Neuroscience 28:1433–54.Google Scholar
Zangaladze, A., Epstein, C. M., Grafton, S. T. & Sathian, K. (1999) Involvement of visual cortex in tactile discrimination of orientation. Nature 401:587–90.Google Scholar