Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:53:03.332Z Has data issue: false hasContentIssue false

Making a case for constructive reductionism

Published online by Cambridge University Press:  06 March 2019

Christian P. Müller*
Affiliation:
Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054 Erlangen, Germany. christian.mueller@uk-erlangen.dehttp://www.psychiatrie.uk-erlangen.de/wir_ueber_uns/mitarbeiter/prof_dr_rer_nat_christian_p_mueller/index_ger.html

Abstract

Borsboom and colleagues argue that reductionism in psychopathology research has not provided the expected insights. Instead, they suggest a systems approach of interacting syndromes, which, however, falls short of a perspective for empirical testing. Here, a combination of both approaches is suggested: a reductionistic empirical approach allowing testability, synergistic with a constructivistic systems appraisal of syndrome networks – a constructive reductionism.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badiani, A. (2013) Substance-specific environmental influences on drug use and drug preference in animals and humans. Current Opinion in Neurobiology 23:588–96.Google Scholar
Caspi, A. & Moffitt, T. E. (2006) Gene-environment interactions in psychiatry: Joining forces with neuroscience. Nature Reviews Neuroscience 7:583–90.Google Scholar
Di Chiara, G. & Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences USA 85:5274–78.Google Scholar
Easton, A. C., Lucchesi, W., Lourdusamy, A., Lenz, B., Solati, J., Golub, Y., Lewczuk, P., Fernandes, C., Desrivieres, S., Dawirs, R. R., Moll, G. H., Kornhuber, J., Frank, J., Hoffmann, P., Soyka, M., Kiefer, F., Schumann, G., Giese, K. P. & Müller, C. P. (2013) AlphaCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology 38:1636–47.Google Scholar
Gulbins, E., Palmada, M., Reichel, M., Luth, A., Bohmer, C., Amato, D., Müller, C. P., Tischbirek, C. H., Groemer, T. W., Tabatabai, G., Becker, K. A., Tripal, P., Staedtler, S., Ackermann, T. F., van Brederode, J., Alzheimer, C., Weller, M., Lang, U. E., Kleuser, B., Grassme, H. & Kornhuber, J. (2013) Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nature Medicine 19:934–38.Google Scholar
Heilig, M. & Koob, G. F. (2007) A key role for corticotropin-releasing factor in alcohol dependence. Trends in Neurosciences 30:399406.Google Scholar
Hyman, S. E., Malenka, R. C. & Nestler, E. J. (2006) Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Reviews in Neurosciences 29:565–98.Google Scholar
Koob, G. F. (1992) Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends in Pharmacological Sciences 13:177–84.Google Scholar
Koob, G. F. & Volkow, N. D. (2016) Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 3:760–73.Google Scholar
Koukouli, F., Rooy, M., Tziotis, D., Sailor, K. A., O'Neill, H. C., Levenga, J., Witte, M., Nilges, M., Changeux, J. P., Hoeffer, C. A., Stitzel, J. A., Gutkin, B. S., DiGregorio, D. A. & Maskos, U. (2017) Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine 23:347–54.Google Scholar
Kreek, M. J., Nielsen, D. A., Butelman, E. R. & Laforge, K. S. (2005) Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nature Neuroscience 8:1450–57.Google Scholar
McBride, W. J., Murphy, J. M. & Ikemoto, S. (1999) Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behavioural Brain Research 101:129–52.Google Scholar
McCreary, A. C., Müller, C. P. & Filip, M. (2015) Psychostimulants: Basic and clinical pharmacology. International Review Neurobiology 120:4183.Google Scholar
Michaelson, J. J., Shi, Y., Gujral, M., Zheng, H., Malhotra, D., Jin, X., Jian, M., Liu, G., Greer, D., Bhandari, A., Wu, W., Corominas, R., Peoples, A., Koren, A., Gore, A., Kang, S., Lin, G. N., Estabillo, J., Gadomski, T., Singh, B., Zhang, K., Akshoomoff, N., Corsello, C., McCarroll, S., Iakoucheva, L. M., Li, Y., Wang, J. & Sebat, J. (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–42.Google Scholar
Mielenz, D., Reichel, M., Jia, T., Quinlan, E. B., Stöckl, T., Mettang, M., Zilske, D., Kirmizi-Alsan, E., Schönberger, P., Praetner, M., Huber, S. E., Amato, D., Schwarz, M., Purohit, P., Brachs, S., Spranger, J., Hess, A., Büttner, C., Ekici, A. B., Perez-Branguli, F., Winner, B., Rauschenberger, V., Banaschewski, T., Bokde, A. L., Büchel, C., Conrod, P. J., Desrivieres, S., Flor, H., Frouin, V., Gallinat, J., Garavan, H., Gowland, P., Heinz, A., Martinot, J. L., Lemaitre, H., Nees, F., Paus, T., Smolka, M. N., Schambony, A., Bäuerle, T., Eulenburg, V., Alzheimer, C., Lourdusamy, A., Schumann, G. & Müller, C. P. (2018) EFhd2/Swiprosin-1 is a common genetic determinator for sensation-seeking/low anxiety and alcohol addiction. Molecular Psychiatry 23(5):1303–19. doi:10.1038/mp.2017.63.Google Scholar
Müller, C. P. (2018) Animal models of psychoactive drug use and addiction: Present problems and future needs for translational approaches. Behavioural Brain Research 352:109–15. doi:10.1016/j.bbr.2017.06.028.Google Scholar
Müller, C. P. & Homberg, J. (2015) The role of serotonin in drug use and addiction. Behavioural Brain Research 277C:146–92.Google Scholar
Müller, C. P. & Huston, J. P. (2006) Determining the region-specific contributions of 5-HT receptors to the psychostimulant effects of cocaine. Trends in Pharmacological Sciences 27:105–12.Google Scholar
Müller, C. P., Kalinichenko, L. S., Tiesel, J., Witt, M., Stöckl, T., Sprenger, E., Fuchser, J., Beckmann, J., Praetner, M., Huber, S. E., Amato, D., Mühle, C., Büttner, C., Ekici, A. B., Smaga, I., Pomierny-Chamiolo, L., Pomierny, B., Filip, M., Eulenburg, V., Gulbins, E., Lourdusamy, A., Reichel, M. & Kornhuber, J. (2017) Paradoxical antidepressant effects of alcohol are related to acid sphingomyelinase and its control of sphingolipid homeostasis. Acta Neuropathologica 133(3):463–83.Google Scholar
Müller, C. P. & Kornhuber, J. (2017) Biological evidence for paradoxical improvement of psychiatric disorder symptoms by addictive drugs. Trends in Pharmacological Sciences 38(6):501502.Google Scholar
Müller, C. P. & Schumann, G. (2011) Drugs as an instrument: A new framework for non-addictive psychoactive drug use. Behavioral and Brain Sciences 34(6):293347.Google Scholar
Nutt, D. J., Lingford-Hughes, A., Erritzoe, D. & Stokes, P. R. (2015) The dopamine theory of addiction: Forty years of highs and lows. Nature Reviews Neuroscience 16:305–12.Google Scholar
Robinson, T. E. & Kolb, B. (2004) Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology 47:3346.Google Scholar
Salamone, J. D. (1996) The behavioral neurochemistry of motivation: Methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. Journal of Neuroscience Methods 64:137–49.Google Scholar
Schneider, M., Levant, B., Reichel, M., Gulbins, E., Kornhuber, J. & Müller, C. P. (2017) Lipids in psychiatric disorders and preventive medicine. Neuroscience and Biobehavioral Reviews 76:336–62.Google Scholar
Schuckit, M. A., Tipp, J. E., Bergman, M., Reich, W., Hesselbrock, V. M. & Smith, T. L. (1997) Comparison of induced and independent major depressive disorders in 2,945 alcoholics. American Journal of Psychiatry 154:948–57.Google Scholar
Schumann, G., Binder, E. B., Holte, A., de Kloet, E. R., Oedegaard, K. J., Robbins, T. W., Walker-Tilley, T. R., Bitter, I., Brown, V. J., Buitelaar, J., Ciccocioppo, R., Cools, R., Escera, C., Fleischhacker, W., Flor, H., Frith, C. D., Heinz, A., Johnsen, E., Kirschbaum, C., Klingberg, T., Lesch, K. P., Lewis, S., Maier, W., Mann, K., Martinot, J. L., Meyer-Lindenberg, A., Müller, C. P., Müller, W. E., Nutt, D. J., Persico, A., Perugi, G., Pessiglione, M., Preuss, U. W., Roiser, J. P., Rossini, P. M., Rybakowski, J. K., Sandi, C., Stephan, K. E., Undurraga, J., Vieta, E., van der Wee, N., Wykes, T., Haro, J. M. & Wittchen, H. U. (2014) Stratified medicine for mental disorders. European Neuropsychopharmacology 24(1):550. doi:10.1016/j.euroneuro.2013.09.010.Google Scholar
Schumann, G., Liu, C., O'Reilly, P., Gao, H., Song, P., Xu, B., Ruggeri, B., Amin, N., Jia, T., Preis, S., Segura, L. M., Akira, S., Barbieri, C., Baumeister, S., Cauchi, S., Clarke, T. K., Enroth, S., Fischer, K., Hallfors, J., Harris, S. E., Hieber, S., Hofer, E., Hottenga, J. J., Johansson, A., Joshi, P. K., Kaartinen, N., Laitinen, J., Lemaitre, R., Loukola, A., Luan, J., Lyytikainen, L. P., Mangino, M., Manichaikul, A., Mbarek, H., Milaneschi, Y., Moayyeri, A., Mukamal, K., Nelson, C., Nettleton, J., Partinen, E., Rawal, R., Robino, A., Rose, L., Sala, C., Satoh, T., Schmidt, R., Schraut, K., Scott, R., Smith, A. V., Starr, J. M., Teumer, A., Trompet, S., Uitterlinden, A. G., Venturini, C., Vergnaud, A. C., Verweij, N., Vitart, V., Vuckovic, D., Wedenoja, J., Yengo, L., Yu, B., Zhang, W., Zhao, J. H., Boomsma, D. I., Chambers, J., Chasman, D. I., Daniela, T., de G., E., Deary, I., Eriksson, J. G., Esko, T., Eulenburg, V., Franco, O. H., Froguel, P., Gieger, C., Grabe, H. J., Gudnason, V., Gyllensten, U., Harris, T. B., Hartikainen, A. L., Heath, A. C., Hocking, L., Hofman, A., Huth, C., Jarvelin, M. R., Jukema, J. W., Kaprio, J., Kooner, J. S., Kutalik, Z., Lahti, J., Langenberg, C., Lehtimaki, T., Liu, Y., Madden, P. A., Martin, N., Morrison, A., Penninx, B., Pirastu, N., Psaty, B., Raitakari, O., Ridker, P., Rose, R., Rotter, J. I., Samani, N. J., Schmidt, H., Spector, T. D., Stott, D., Strachan, D., Tzoulaki, I., van der Harst, P., van Duijn, C. M., Marques-Vidal, P., Vollenweider, P., Wareham, N. J., Whitfield, J. B., Wilson, J., Wolffenbuttel, B., Bakalkin, G., Evangelou, E., Liu, Y., Rice, K. M., Desrivieres, S., Kliewer, S. A., Mangelsdorf, D. J., Müller, C. P., Levy, D. & Elliott, P. (2016) KLB is associated with alcohol drinking, and its gene product beta-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences USA 113:14372–77.Google Scholar
Spanagel, R. (2009) Alcoholism: A systems approach from molecular physiology to addictive behavior. Physiological Reviews 89:649705.Google Scholar
Spanagel, R. & Kiefer, F. (2008) Drugs for relapse prevention of alcoholism: Ten years of progress. Trends in Pharmacological Sciences 29:109–15.Google Scholar
Ungless, M. A., Argilli, E. & Bonci, A. (2010) Effects of stress and aversion on dopamine neurons: Implications for addiction. Neuroscience and Biobehavioral Reviews 35:151–56.Google Scholar
Westerink, B. H. (1995) Brain microdialysis and its application for the study of animal behaviour. Behavioural Brain Research 70:103–24.Google Scholar
Williams, M. J. & Adinoff, B. (2008) The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 33:1779–97.Google Scholar
Wise, R. A. (2002) Brain reward circuitry: Insights from unsensed incentives. Neuron 36:229–40.Google Scholar
Zinberg, N. E. (1984) Drug, set, and setting: The basis for controlled intoxicant use. Yale University Press.Google Scholar