Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T15:12:27.590Z Has data issue: false hasContentIssue false

Precision about the automatic emotional brain

Published online by Cambridge University Press:  08 June 2015

Patrik Vuilleumier*
Affiliation:
Department of Neuroscience, Medical School, University of Geneva, 1205 Geneva, Switzerland; Department of Neurology, University Hospital of Geneva, 1205 Geneva, Switzerland; Swiss Center for Affective Sciences, University of Geneva, 1211 Geneva, Switzerland. patrik.vuilleumier@unige.chhttp://labnic.unige.ch

Abstract

The question of automaticity in emotion processing has been debated under different perspectives in recent years. Satisfying answers to this issue will require a better definition of automaticity in terms of relevant behavioral phenomena, ecological conditions of occurrence, and a more precise mechanistic account of the underlying neural circuits.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansorge, U., Kiss, M. & Eimer, M. (2009) Goal-driven attentional capture by invisible colors: Evidence from event-related potentials. Psychonomic Bulletin & Review 16(4):648–53. doi: 10.3758/PBR.16.4.648.Google Scholar
Bahrami, B., Lavie, N. & Rees, G. (2007) Attentional load modulates responses of human primary visual cortex to invisible stimuli. Current Biology 17(6):509–13. doi: 10.1016/j.cub.2007.01.070.Google Scholar
Bargh, J. A. (1989) Conditional automaticity: Varieties of automatic influence in social perception and cognition. Unintended Thought 3:5169.Google Scholar
Bishop, S. J., Duncan, J. & Lawrence, A. D. (2004) State anxiety modulation of the amygdala response to unattended threat-related stimuli. Journal of Neuroscience 24(46):10364–68. doi: 10.1523/JNEUROSCI.2550-04.2004.Google Scholar
Cornwell, B. R., Alvarez, R. P., Lissek, S., Kaplan, R., Ernst, M. & Grillon, C. (2011) Anxiety overrides the blocking effects of high perceptual load on amygdala reactivity to threat-related distractors. Neuropsychologia 49(5):1363–68. doi: 10.1016/j.neuropsychologia.2011.02.049.Google Scholar
Dehaene, S., Charles, L., King, J. R. & Marti, S. (2014) Toward a computational theory of conscious processing. Current Opinion in Neurobiology 25:7684. doi: 10.1016/j.conb.2013.12.005.Google Scholar
Desimone, R. (1998) Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 353(1373):1245–55. doi: 10.1098/rstb.1998.0280.Google Scholar
Dimberg, U., Thunberg, M. & Elmehed, K. (2000) Unconscious facial reactions to emotional facial expressions. Psychological Sciences 11(1):8689.Google Scholar
Dominguez-Borras, J. & Vuilleumier, P. (2013) Affective biases in attention and perception. In: Handbook of human affective neuroscience, ed. Armony, J. L. & Vuilleumier, P., pp. 331–56. Cambridge University Press.Google Scholar
Eimer, M. & Schlaghecken, F. (2002) Links between conscious awareness and response inhibition: Evidence from masked priming. Psychonomic Bulletin & Review 9(3):514–20.Google Scholar
Fischer, R., Schubert, T. & Liepelt, R. (2007) Accessory stimuli modulate effects of nonconscious priming. Perceptives in Psychophysics 69(1):922.Google Scholar
Folk, C. L., Remington, R. W. & Johnston, J. C. (1992) Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology-Human Perception and Performance 18(4):1030–44.Google Scholar
Gabay, S., Nestor, A., Dundas, E. & Behrmann, M. (2014) Monocular advantage for face perception implicates subcortical mechanisms in adult humans. Journal of Cognitive Neuroscience 26(5):927–37. doi: 10.1162/jocn_a_00528.Google Scholar
Gray, J. A. (1990) Brain systems that mediate both emotion and cognition. Cognition and Emotion 4(3):269–88.Google Scholar
Hamm, A. O., Weike, A. I., Schupp, H. T., Treig, T., Dressel, A. & Kessler, C. (2003) Affective blindsight: Intact fear conditioning to a visual cue in a cortically blind patient. Brain 126(Pt 2):267–75.Google Scholar
Henke, K., Treyer, V., Nagy, E. T., Kneifel, S., Dursteler, M., Nitsch, R. M. & Buck, A. (2003) Active hippocampus during nonconscious memories. Consciousness and Cognition 12(1):3148.CrossRefGoogle ScholarPubMed
Kouider, S. & Dehaene, S. (2007) Levels of processing during non-conscious perception: A critical review of visual masking. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 362(1481):857–75. doi: 10.1098/rstb.2007.2093.Google Scholar
Ledoux, J. (2000) Cognitive-emotional interactions: Listen to the brain. In: Cognitive Neuroscience of Emotion, ed. Lane, R. D. R., Nadel, L., Ahern, G. L., Allen, J. & Kaszniak, A. W., pp. 129–55. Oxford University Press..Google Scholar
Leventhal, H. & Scherer, K. (1987) The relationship of emotion to cognition: A functional approach to a semantic controversy. Cognition and Emotion 1(1):328.Google Scholar
Maior, R. S., Hori, E., Tomaz, C., Ono, T. & Nishijo, H. (2010) The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behavioral Brain Research 215(1):129–35. doi: 10.1016/j.bbr.2010.07.009.Google Scholar
Martens, U., Ansorge, U. & Kiefer, M. (2011) Controlling the unconscious: Attentional task sets modulate subliminal semantic and visuomotor processes differentially. Psychological Science 22(2):282–91. doi: 10.1177/0956797610397056.Google Scholar
Moors, A., De Houwer, J., Hermans, D. & Eelen, P. (2005) Unintentional processing of motivational valence. Quarterly Journal of Experimental Psychology Section A 58(6):1043–63. doi: 10.1080/02724980443000467.Google Scholar
Morris, J. S., DeGelder, B., Weiskrantz, L. & Dolan, R. J. (2001) Differential extrageniculostriate and amygdala responses to presentation of emotional faces in a cortically blind field. Brain 124(Pt 6):1241–52.Google Scholar
Nakamura, K., Dehaene, S., Jobert, A., Le Bihan, D. & Kouider, S. (2007) Task-specific change of unconscious neural priming in the cerebral language network. Proceeding of the National Academy of Sciences of the United States of America 104(49):19643–48. doi: 10.1073/pnas.0704487104.Google Scholar
Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T. & Nishijo, H. (2014) Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neurosciences 8:85. doi: 10.3389/fnbeh.2014.00085.Google Scholar
Pegna, A. J., Khateb, A., Lazeyras, F. & Seghier, M. L. (2005) Discriminating emotional faces without primary visual cortices involves the right amygdala. Nature Neuroscience 8(1):2425. doi: 10.1038/nn1364.Google Scholar
Pessiglione, M., Petrovic, P., Daunizeau, J., Palminteri, S., Dolan, R. J. & Frith, C. D. (2008) Subliminal instrumental conditioning demonstrated in the human brain. Neuron 59(4):561–67. doi: 10.1016/j.neuron.2008.07.005.Google Scholar
Pessoa, L. (2013) The cognitive-emotional brain. From interactions to integration. MIT Press.Google Scholar
Pessoa, L. & Adolphs, R. (2010) Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews. Neurosciences 11(11):773–83. doi: 10.1038/nrn2920. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20959860.Google Scholar
Pessoa, L. & Ungerleider, L. G. (2004) Neuroimaging studies of attention and the processing of emotion-laden stimuli. Progress in Brain Research 144:171–82. doi: 10.1016/S0079-6123(03)14412-3.Google Scholar
Pichon, S., Miendlarzewska, E. A., Eryilmaz, H. & Vuilleumier, P. (2015) Cumulative activation during positive and negative events and state anxiety predicts subsequent inertia of amygdala reactivity. Social Cognitive and Affective Neuroscience 10(2):180–90.Google Scholar
Pourtois, G., Schettino, A. & Vuilleumier, P. (2013) Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology 92(3):492512. doi: 10.1016/j.biopsycho.2012.02.007.Google Scholar
Pourtois, G., Spinelli, L., Seeck, M. & Vuilleumier, P. (2010) Temporal precedence of emotion over attention modulations in the lateral amygdala: Intracranial ERP evidence from a patient with temporal lobe epilepsy. Cognitive and Affective Behavioral Neuroscience 10(1):8393. doi: 10.3758/CABN.10.1.83.Google Scholar
Raio, C. M., Carmel, D., Carrasco, M. & Phelps, E. A. (2012) Nonconscious fear is quickly acquired but swiftly forgotten. Current Biology 22(12):R477–79. doi: 10.1016/j.cub.2012.04.023.Google Scholar
Sander, D., Grandjean, D. & Scherer, K. R. (2005) A systems approach to appraisal mechanisms in emotion. Neural Networks 18(4):317–52. doi: 10.1016/j.neunet.2005.03.001.Google Scholar
Schmid, M. C., Mrowka, S. W., Turchi, J., Saunders, R. C., Wilke, M., Peters, A. J., Ye, F. Q. & Leopold, D. A. (2010) Blindsight depends on the lateral geniculate nucleus. Nature 466(7304):373–77. doi: 10.1038/nature09179.CrossRefGoogle ScholarPubMed
Sergent, C. & Dehaene, S. (2004) Is consciousness a gradual phenomenon? Evidence for an all-or-none bifurcation during the attentional blink. Psychological Sciences 15(11):720–28. doi: 10.1111/j.0956-7976.2004.00748.x.Google Scholar
Shafer, A. T., Matveychuk, D., Penney, T., O'Hare, A. J., Stokes, J. & Dolcos, F. (2012) Processing of emotional distraction is both automatic and modulated by attention: Evidence from an event-related fMRI investigation. Journal of Cognitive Neurosciences 24(5):1233–52. doi: 10.1162/jocn_a_00206.Google Scholar
Silvert, L., Lepsien, J., Fragopanagos, N., Goolsby, B., Kiss, M., Taylor, J. G., Raymond, J. E., Shapiro, K. L., Eimer, M. & Nobre, A. C. (2007) Influence of attentional demands on the processing of emotional facial expressions in the amygdala. NeuroImage 38(2):357–66. doi: 10.1016/j.neuroimage.2007.07.023.Google Scholar
van Gaal, S., Ridderinkhof, K. R., Scholte, H. S. & Lamme, V. A. (2010) Unconscious activation of the prefrontal no-go network. Journal of Neuroscience 30(11):4143–50. doi: 10.1523/JNEUROSCI.2992-09.2010.CrossRefGoogle ScholarPubMed
Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T. & Nishijo, H. (2013) Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences of the United States of America 110(47) 19000–9005. doi: 10.1073/pnas.1312648110.Google Scholar
Vuilleumier, P. (2005) How brains beware: Neural mechanisms of emotional attention. Trends in Cognitive Sciences 9(12):585–94. doi: 10.1016/j.tics.2005.10.011.Google Scholar
Vuilleumier, P. (2009) The role of the human amygdala in perception and attention. In: The human amygdala, ed. Phelps, P. J. W. E. A., pp. 220–49. Guilford Press.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. (2001) Effects of attention and emotion on face processing in the human brain: An event-related fMRI study. Neuron 30(3):829–41.Google Scholar
Vuilleumier, P., Armony, J. L., Driver, J. & Dolan, R. J. (2003) Distinct spatial frequency sensitivities for processing faces and emotional expressions. Nature Neuroscience 6(6):624–31. doi: 10.1038/nn1057.Google Scholar
Vuilleumier, P. & Righart, R. (2011) Attention and automaticity in processing facial expressions. In: The Oxford handbook of face perception, ed. Calder, A. J., Rhodes, G., Johnston, M. H. & Haxby, J. V., pp. 799820. Oxford University Press.Google Scholar
Whalen, P. J., Kagan, J., Cook, R. G., Davis, F. C., Kim, H., Polis, S., McLaren, D. G., Somerville, L. H., McLean, A. A., Maxwell, J. S. & Johnstone, T. (2004) Human amygdala responsivity to masked fearful eye whites. Science 306(5704):2061. doi: 10.1126/science.1103617.Google Scholar
Williams, M. A., Morris, A. P., McGlone, F., Abbott, D. F. & Mattingley, J. B. (2004) Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. Journal of Neuroscience 24(12):2898–904. doi: 10.1523/JNEUROSCI.4977-03.2004.Google Scholar
Zhang, W., Schneider, D. M., Belova, M. A., Morrison, S. E., Paton, J. J. & Salzman, C. D. (2013) Functional circuits and anatomical distribution of response properties in the primate amygdala. Journal of Neuroscience 33(2):722–33. doi: 10.1523/JNEUROSCI.2970-12.2013.Google Scholar