Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T22:10:19.452Z Has data issue: false hasContentIssue false

The cognitive-emotional amalgam

Published online by Cambridge University Press:  08 June 2015

Luiz Pessoa*
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742. pessoa@umd.eduhttp://www.cognitionemotion.org

Abstract

In the précis to The Cognitive-Emotional Brain, I summarize a framework for understanding the organization of cognition and emotion in the brain. Here, I address six major themes that emerged in the commentaries: (1) emotional perception and automaticity; (2) the status of cognition and emotion: together or separate? (3) evolutionary implications for the understanding of emotion and cognition; (4) the diverse forms of cognitive-emotional integration; (5) dual process theories; and (6) functional diversity of brain regions/networks and cognitive ontologies. The central argument is, again, that cognition and emotion are so highly interactive, and indeed integrated, that these two elements blend into a new amalgam.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K. & Miyashita, Y. (2012) Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cerebral Cortex 22(7):1586–92. doi: 10.1093/cercor/bhr234.CrossRefGoogle ScholarPubMed
Amaral, D. G. & Price, J. L. (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). Journal of Comparative Neurology 230(4):465–96. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=6520247.Google Scholar
Amaral, D. G., Price, J. L., Pitkanen, A. & Carmichael, S. T. (1992) Anatomical organization of the primate amygdaloid complex. In: The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction, ed. Aggleton, J., pp. 166. Wiley-Liss.Google Scholar
Anderson, M. L., Kinnison, J. & Pessoa, L. (2013) Describing functional diversity of brain regions and brain networks. NeuroImage 73:5058.Google Scholar
Averbeck, B. B. & Seo, M. (2008) The statistical neuroanatomy of frontal networks in the macaque. PLoS Computational Biology 4(4):e1000050. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18389057.Google Scholar
Barton, R. A. & Harvey, P. H. (2000) Mosaic evolution of brain structure in mammals. Nature 405(6790):1055–58.CrossRefGoogle ScholarPubMed
Bilder, R. M., Sabb, F. W., Parker, D. S., Kalar, D., Chu, W. W., Fox, J., Freimer, N. B. & Poldrack, R. A. (2009) Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry 14(4–5):419–50.Google Scholar
Botvinick, M. M. (2007) Conflict monitoring and decision making: Reconciling two perspectives on anterior cingulate function. Cognitive, Affective, and Behavioral Neuroscience 7(4):356–66.Google Scholar
Butler, A. B. (2009) Triune brain concept: A comparative evolutionary perspective. In: Encyclopedia of Neuroscience, vol. 9, ed. Squire, L. R. , pp. 1185–93. Academic Press.Google Scholar
Cardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. (2002) Emotion and motivation: The role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience & Biobehavioral Reviews 26(3):321–52. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12034134.Google Scholar
Chareyron, L. J., Banta Lavenex, P., Amaral, D. G. & Lavenex, P. (2011) Stereological analysis of the rat and monkey amygdala. Journal of Comparative Neurology 519(16):3218–39.Google Scholar
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18:193222. doi: 10.1146/annurev.ne.18.030195.001205.CrossRefGoogle ScholarPubMed
Dobzhansky, T. (1973) Nothing in biology makes sense except in the light of evolution. American Biology Teacher 35:125–29.Google Scholar
Evans, J. St. B. T. (2008) Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology 59(1):255–78.Google Scholar
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E. & Dolan, R. J. (1997) Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6(3):218–29. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9344826.Google Scholar
Ghashghaei, H. T., Hilgetag, C. C. & Barbas, H. (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. NeuroImage 34(3):905–23. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17126037.Google Scholar
Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. (2001) An fMRI investigation of emotional engagement in moral judgment. Science 293(5537):2105–108. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11557895.Google Scholar
Grossberg, S., Chang, H.-C. & Cao, Y. (2014) Where's Waldo? How perceptual, cognitive, and emotional brain processes cooperate during learning to categorize and find desired objects in a cluttered scene. Frontiers in Integrative Neuroscience 8:43.Google Scholar
Hu, K., Padmala, S. & Pessoa, L. (2013) Interactions between reward and threat during visual processing. Neuropsychologia 51(9):1763–72.Google Scholar
Inzlicht, M. & Legault, L. (2014) No pain, no gain: How distress underlies effective self-control (and unites diverse social psychological phenomena). In: The control within: Motivation and its regulation, ed. Forgas, J. & Harmon-Jones, E., pp. 115–32. Psychology Press.Google Scholar
Kelso, J. & Engstrøm, D. A. (2006) The complementary nature. MIT Press.Google Scholar
Keren, G. & Schul, Y. (2009) Two is not always better than one: A critical evaluation of two-system theories. Perspectives on Psychological Science 4(6):533–38.Google Scholar
Kruglanski, A. W., Erbs, H. P., Pierro, A., Mannetti, L. & Chun, W. Y. (2006) On parametric continuities in the world of binary either ors. Psychological Inquiry 17:153–65.Google Scholar
Lee, L., Harrison, L. M. & Mechelli, A. (2003) A report of the functional connectivity workshop, Dusseldorf 2002. NeuroImage 19(2 Pt 1):457–65. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12814594.CrossRefGoogle ScholarPubMed
Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology 77(1):2442.Google Scholar
MacLean, P. D. (1990) The triune brain in evolution: Role in paleocerebral functions. Plenum Press.Google Scholar
Mantini, D., Gerits, A., Nelissen, K., Durand, J. B., Joly, O., Simone, L., Sawamura, H., Wardak, C., Orban, G. A., Buckner, R. L. & Vanduffel, W. (2011) Default mode of brain function in monkeys. Journal of Neuroscience 31(36):12954–62.Google Scholar
Markovic, J., Anderson, A. K. & Todd, R. M. (2014) Tuning to the significant: Neural and genetic processes underlying affective enhancement of visual perception and memory. Behavioural Brain Research 259:229–41. doi: 10.1016/j.bbr.2013.11.018.Google Scholar
Mather, M. & Sutherland, M. R. (2011) Arousal-biased competition in perception and memory. Perspectives on Psychological Science 6(2):114–33.Google Scholar
Modha, D. S. & Singh, R. (2010) Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences of the United States of America 107(30):13485–90. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20628011.Google Scholar
Moll, J., de Oliveira-Souza, R., Moll, F. T., Ignacio, F. A., Bramati, I. E., Caparelli-Daquer, E. M. & Eslinger, P. J. (2005) The moral affiliations of disgust: A functional MRI study. Cognitive and Behavioral Neurology 18(1):6878. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15761278.CrossRefGoogle ScholarPubMed
Moll, J., de Oliveira-Souza, R. & Zahn, R. (2008a) The neural basis of moral cognition. Annals of the New York Academy of Sciences 1124(1):161–80.Google Scholar
Newell, A. (1973) You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In: Visual information processing, ed. Chase, W., pp. 283308. Academic Press.Google Scholar
Parvizi, J. (2009) Corticocentric myopia: Old bias in new cognitive sciences. Trends in Cognitive Sciences 13(8):354–59.CrossRefGoogle ScholarPubMed
Passingham, R. E., Stephan, K. E. & Kotter, R. (2002) The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience 3(8):606–16. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12154362.Google Scholar
Pessoa, L. (2013) The cognitive-emotional brain. From interactions to integration. MIT Press.Google Scholar
Pessoa, L. (2014) Understanding brain networks and brain organization. Physics of Life Reviews 11(3):400435.Google Scholar
Petrovich, G. D., Canteras, N. S. & Swanson, L. W. (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Research Reviews 38(1–2):247–89. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11750934.Google Scholar
Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science 10(2):5963.Google Scholar
Poldrack, R. A. (2011) Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron 72(5):692–97.Google Scholar
Price, C. J. & Friston, K. J. (2005) Functional ontologies for cognition: The systematic definition of structure and function. Cognitive Neuropsychology 22(3/4):262–75.Google Scholar
Rempel-Clower, N. L. & Barbas, H. (1998) Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 398(3):393419. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9714151.Google Scholar
Reynolds, J. H., Chelazzi, L. & Desimone, R. (1999) Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience 19:1736–53.Google Scholar
Risold, P. Y., Thompson, R. H. & Swanson, L. W. (1997) The structural organization of connections between hypothalamus and cerebral cortex. Brain Research Reviews 24(2–3):197254. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9385455.Google Scholar
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J. & Davidson, R. J. (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience 12(3):154–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21331082.Google Scholar
Striedter, G. F. (2005) Principles of brain evolution. Sinauer Associates.Google Scholar