The cause of birefringence in several garnet-group minerals with general chemical formula, [8]X3 [6]Y2 [4]Z3 [4]O12, which was observed over 100 years ago, is unknown, although many different reasons were proposed, including symmetry lower than cubic. In this study, electron microprobe analyses (EMPA) were obtained for a Ti-rich andradite, ideally Ca3(Fe2 3+)Si3O12, from Magnet Cove, Arkansas, USA, and the results show that the sample is inhomogeneous with two distinct compositions. The crystal structure was refined by the Rietveld method, cubic space group $Ia\overline 3 d$ , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data, which shows a mixture of three distinct cubic phases that are intergrown together and cause birefringence because of strain arising from small structural mismatch. This mixture of three cubic phases was not observed by any other experimental technique. These results have many implications, including garnet phase transitions from cubic to lower symmetry in the mantle, which has important geophysical consequences.