Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:11:50.496Z Has data issue: false hasContentIssue false

Study of temperature-dependent crystalline state evolution of β-SiC nanorods by X-ray diffraction

Published online by Cambridge University Press:  07 October 2013

M. Zhang
Affiliation:
School of Electromechanical Engineering, Qingdao University of Science and Technology, Key Laboratory of Polymer Material Advanced Manufacturings Technology of Shandong Provincial, Qingdao 266061, China
Z.J. Li*
Affiliation:
School of Electromechanical Engineering, Qingdao University of Science and Technology, Key Laboratory of Polymer Material Advanced Manufacturings Technology of Shandong Provincial, Qingdao 266061, China
A.L. Meng
Affiliation:
School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, State Key Laboratory Base of Eco-chemical Engineering, Qingdao 266061, China
*
a)Author to whom correspondence should be addressed. Electronic mail: zhenjiangli@qust.edu.cn

Abstract

Investigations into the morphology and structural evolvement of nanomaterials are essential for understanding the growth process. Herein, we present meaningful results on crystallinity transformation of β-SiC nanorods at different preparation temperatures using X-ray diffraction. Results of the characterization indicated that both crystallinity and yield of the as-prepared β-SiC nanostructures were enhanced with increasing reaction temperature. Scanning electron microscope and high-resolution transmission electron microscope were further employed to understand detailed structural information of the SiC nanorods obtained at specific temperature. The results may shed light on structural evolvement for fabrication of nanomaterials.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chen, J. L., Li, Y. D., Ma, Y. M., Qin, Y. N., and Chang, L. (2001). “Formation of bamboo-shaped carbon filaments and dependence of their morphology on catalyst composition and reaction conditions,” Carbon 39, 14671475.CrossRefGoogle Scholar
Li, Z. J., Gao, W. D., Meng, A. L., Geng, Z. D., and Wan, L. B. (2008). “Effects of Fe and Ni on the yield and morphology of the 1D SiC nanostructures prepared by chemical vapor reaction,” J. Cryst. Growth 310, 44014406.CrossRefGoogle Scholar
Li, Z. J., Zhang, M., and Meng, A. L. (2011). “Synthesis and mechanism of single-crystalline β-SiC nanowire arrays on a 6H-SiC substrate,” Cryst. Eng. Commun. 13, 40974101.CrossRefGoogle Scholar
Lo, H. C., Das, D., Hwang, J. S., Chen, K. H., Hsu, C. H., Chen, C. F., and Chen, L. C. (2003). “SiC-capped nanotip arrays for field emission with ultralow turn-on field,” Appl. Phys. Lett. 83, 14201422.CrossRefGoogle Scholar
Meng, A. L., Zhang, M., Gao, W. D., Sun, S. B., and Li, Z. J. (2011). “Large-scale synthesis of β-SiC nanochains and their Raman/photoluminescence properties,” Nanoscale Res. Lett. 6, 3440.CrossRefGoogle ScholarPubMed
Seeger, T., Kohler-Redlich, P., and Rühle, M. (2000). “Synthesis of nanometer-sized SiC whiskers in the arc-discharge,” Adv. Mater. 12, 279282.3.0.CO;2-1>CrossRefGoogle Scholar
Simmons, B. A., Li, S. C., John, V. T., McPherson, G. L., Bose, A., Zhou, W. L., and He, J. B. (2002). “Morphology of CdS nanocrystals synthesized in a mixed surfactant system,” Nano Lett. 2, 263268.CrossRefGoogle Scholar
Siqueira, J. R., Werner, C. F., Backer, M., Poghossian, A., Zucolotto, V., Oliveira, O. N., and Schcning, M. J. (2009). “Layer-by-layer assembly of carbon nanotubes incorporated in light-addressable potentiometric sensors,” J. Phys. Chem. C 113, 1476514770.CrossRefGoogle Scholar
Sirbuly, D. J., Law, M., Yan, H. Q., and Yang, P. D. (2005). “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109, 1519015213.CrossRefGoogle ScholarPubMed
Tang, Q., Zhou, W. J., Zhang, W., Ou, S. M., Jiang, K., Yu, W. C., and Qian, Y. T. (2005). “Size-controllable growth of single cystal In(OH)3 and In2O3 nanocubes,” Cryst. Growth Des. 5, 147150.CrossRefGoogle Scholar
Wagner, R. S., and Ellis, W. C. (1964). “Vapor–liquid–solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 8990.CrossRefGoogle Scholar
Xi, G. C., Peng, Y. Y., Wan, S. M., Li, T. W., Yu, W. C., and Qian, Y. T. (2004). “Lithium-assisted synthesis and characterization of crystalline 3C–SiC nanobelts,” J. Phys. Chem. B 108, 2010220104.CrossRefGoogle Scholar
Yang, W. Y., Miao, H. Z., Xie, Z. P., Zhang, L. G., and An, L. N. (2004). “Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor,” Chem. Phys. Lett. 383, 441444.CrossRefGoogle Scholar
Ye, C. H., Meng, G. W., Jiang, Z., Wang, Y. H., Wang, G. Z., and Zhang, L. D. (2002). “Rational growth of Bi2S3 nanotubes from quasi-two-dimensional precursors,” J. Am. Chem. Soc. 124, 1518015181.CrossRefGoogle ScholarPubMed
Zhang, C. and Zhu, Y. F. (2005). “Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts,” Chem. Mater. 17, 35373545.CrossRefGoogle Scholar
Zhang, X. N., Chen, Y. Q., Xie, Z. P., and Yang, W. Y. (2010). “Shape and doping enhanced field emission properties of quasialigned 3C- SiC nanowires,” J. Phys. Chem. C 114, 82518255.CrossRefGoogle Scholar