Field-structured magnetic particle composites are an important new class of materials that have great potential as both sensors and actuators. These materials are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic fields while the resin polymerizes. If a simple uniaxial magnetic field is used, the particles will form chains, yielding composites whose magnetic susceptibility is enhanced along a single direction. A biaxial magnetic field, comprised of two orthogonal ac fields, forms particle sheets, yielding composites whose magnetic susceptibility is enhanced along two principal directions. A balanced triaxial magnetic field can be used to enhance the susceptibility in all directions, and biased heterodyned triaxial magnetic fields are especially effective for producing composites with a greatly enhanced susceptibility along a single axis. Magnetostriction is quadratic in the susceptibility, so increasing the composite susceptibility is important to developing actuators that function well at modest fields. To investigate magnetostriction in these field-structured composites we have constructed a sensitive, constant-stress apparatus capable of 1 ppm strain resolution. The sample geometry is designed to minimize demagnetizing field effects. We have demonstrated field-structured composites with nearly 10,000 ppm strain, and have shown that at large magnetic fields a structural phase transition occurs within the composite. These experimental results are compared to microscopic, self-consistent field simulations of magnetostriction in these complex, disordered materials.