Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:47:35.806Z Has data issue: false hasContentIssue false

Organically Hybridized SnO2 Sensors for Selective Detection of Gas Molecules

Published online by Cambridge University Press:  01 February 2011

Ichiro Matsubara
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Kouta Hosono
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Norimitsu Murayama
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Woosuck Shin
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Noriya Izu
Affiliation:
National Institute of Advanced Industrial Science and Technology, Shimo-Shidami, Moriyama-ku, Nagoya 463–8560, Japan
Get access

Abstract

Gas sensors based on organically hybridized SnO2 films are demonstrated. Upon exposure to CO gas, the electrical resistance of the hybrid sensor with amino groups in the organic components increases (R-increasing response), whereas other reducing gases such as H2 and CH4 gases cause the decreasing in the sensor resistance. For the n-type semiconductors like SnO2, the R-increasing response cannot be explained by the ordinary combustion mechanism. The appearance of the anomalous R-increasing response to CO gas can be controlled by the functional groups of the organic component. The hybrid sensor with hydroxy groups also exhibits the R-increasing response to CO gas, whereas it is not observed for the sensor with alkyl groups. The hybridization can improve gas selectivity of the SnO2 semiconducting gas sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ihokura, K. and Watson, J., The Stannic Oxide Gas Sensor-Principles and Applications (CRC Press, Boca Raton, FL, 1994).Google Scholar
2. Shimizu, Y. and Egashira, M., MRS Bulletin, 24, No. 9, 14 (1999).10.1557/S0883769400052465Google Scholar
3. Schubert, U., Husing, N., and Lorenz, A., Chem. Mater., 7, 2010 (1995).10.1021/cm00059a007Google Scholar
4. Sanchez, C. and Ribot, F., New J. Chem., 18, 1007 (1994).Google Scholar
5. Ogawa, M. and Kuroda, K., Chem. Rev., 95, 399 (1995).10.1021/cr00034a005Google Scholar
6. Harreld, J. H., Dunn, B., and Nazar, L. F., Inter. J. Inorg. Mater., 1, 135 (1999).10.1016/S1466-6049(99)00022-7Google Scholar
7. Guizard, C., Bac, A., Barboiu, M., and Hovnanian, N., Sep. Purif. Methods, 25, 167 (2001).10.1016/S1383-5866(01)00101-0Google Scholar
8. Walcarius, A., Chem. Mater., 13, 3351 (2001).10.1021/cm0110167Google Scholar
9. Kagan, C. R., Mitzi, D. B., and Dimitrakopoulos, C. D., Science, 286, 945 (1999).10.1126/science.286.5441.945Google Scholar
10. Sheeney-Haj-Ichia, L., Wasserman, J., and Willner, I., Adv. Mater., 14, 1323 (2002).10.1002/1521-4095(20020916)14:18<1323::AID-ADMA1323>3.0.CO;2-D3.0.CO;2-D>Google Scholar
11. Tsuru, K., Hayakawa, S., Ohtsuki, C., and Osaka, A., J. Sol-Gel Sci. Tech., 13, 237 (1998).10.1023/A:1008621304371Google Scholar
12. Infrared Structural Correlation Tables and Data Cards, R. G. Miller, H. Willis, Eds. (Heyden, London, 1969).Google Scholar
13. Fadeev, A. Y., Helmy, R., Marcinko, S., Langmuir, 18, 7521 (2002).10.1021/la020178uGoogle Scholar
14. Culler, S. R., Ishida, H., Koenig, J. K., Appl. Spectrosc., 1, 38 (1984).Google Scholar
15. Williams, G., Coles, G. S. V., MRS Bull., 24, (6), 25 (1999).10.1557/S0883769400052477Google Scholar
16. Pilkenton, S., Xu, W., Raftery, D., Anal. Sci. 17, 125 (2001).10.2116/analsci.17.125Google Scholar
17. Bogillo, V. I., Gun'ko, V. M., Langmuir, 12, 115 (1996).10.1021/la941023sGoogle Scholar
18. Alexeev, O. S., Graham, G. W., Kim, D. W., Shelef, M., Gates, B. C., Phys. Chem. Chem. Phys., 1, 5725 (1999).10.1039/a907022bGoogle Scholar