Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T05:17:46.383Z Has data issue: false hasContentIssue false

Automorphisms of Cayley graphs of metacyclic groups of prime-power order

Published online by Cambridge University Press:  09 April 2009

Caiheng Li
Affiliation:
Department of Mathematics and Statistics, The University of Western Australia, Nedlands WA 6907, Australia e-mail: li@maths.uwa.edu.au
Hyo-Seob Sim
Affiliation:
Division of Mathematical Sciences, Pukyong National University, Pusan 608-737, Korea e-mail: hism@pknu.ac.kr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper inverstigates the automorphism groups of Cayley graphs of metracyclic p-gorups. A characterization is given of the automorphism groups of Cayley grahs of a metacyclic p-group for odd prime p. In particular, a complete determiniation of the automophism group of a connected Cayley graph with valency less than 2p of a nonabelian metacyclic p-group is obtained as a consequence. In subsequent work, the result of this paper has been applied to solve several problems in graph theory.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2001

References

[1]Alspach, B., ‘Point-symmetric graphs and digraphs of prime order and transitive permutation groups of prime degree’, J. Combin. Theory Ser. B 15 (1978), 1217.CrossRefGoogle Scholar
[2]Alspach, B. and Xu, M. Y., ‘Half-transitive graphs of order 3p’, J. Algebraic Combin. 3 (1994), 347355.CrossRefGoogle Scholar
[3]Baik, Y. G., Feng, Y. Q., Sim, H. S. and Xu, M. Y., ‘On the normality of Cayley graphs of abelian groups’, Algebra Colloq. 5 (1998), 287304.Google Scholar
[4]Bouwer, I. Z., ‘Vertex and edge-transitive but not 1-transitive graphs’, Canad. Math. Bull. 13 (1970), 231237.CrossRefGoogle Scholar
[5]Dixon, J. D. and Mortimer, B., Permutation groups (Springer, New York, 1996).CrossRefGoogle Scholar
[6]Feng, Y. Q., The normality of Cayley digraphs with small valencies (Ph. D. Thesis, Peking University, 1997).Google Scholar
[7]Godsil, C. D., ‘On the full automorphism group of a graph’, Combinatorica 1 (1981), 243256.CrossRefGoogle Scholar
[8]Gorenstein, D., Finite simple groups (Plenum Press, New York, 1982).CrossRefGoogle Scholar
[9]Guralnick, R. M., ‘Subgroups of prime power index in a simple group’, J. Algebra 81 (1993), 304311.CrossRefGoogle Scholar
[10]Huppert, B. and Blackburn, N., Finite groups II (Springer, New York, 1982).CrossRefGoogle Scholar
[11]Li, C. H., ‘On isomorphisms of connected Cayley graphs III’, Bull. Austral. Math. Soc. 57 (1998), 137145.CrossRefGoogle Scholar
[12]Li, C. H. and Sim, H. S., ‘The graphical regular representations of finite metracyclic p-groups’, European J. Combin. 21 (2000), 917925.Google Scholar
[13]Li, C. H. and Sim, H. S., ‘On half-transitive metacirulant graphs of prime-power order’, J. Combin. Theory (Ser. B) 81 (2001), 4557.CrossRefGoogle Scholar
[14]Lindenberg, W., ‘Die Ordnungen der Automorphismengruppen von Zerfallenden bizyklischen p-Gruppen’, berichte Gesellsch. Math. Datenverarb. 57 (1972), 203215.Google Scholar
[15]Lindenberg, W., ‘Eine Klasse von p-Gruppen, deren Automorphismengruppen p-Gruppen sind’, Period. Math. Hungar. 5 (1974), 171183.CrossRefGoogle Scholar
[16]Maruŝiĉ, D., ‘Recent develpment in half-transitive graphs’, Discrete Math. 182 (1998), 219231.CrossRefGoogle Scholar
[17]Suzuki, M.Gruop thoery I (Springer, New York, 1982).Google Scholar
[18]Suzuki, M., Group theory II (Springer, New York, 1986).CrossRefGoogle Scholar
[19]Tutte, W. T., Connectivity in graphs (University of Toronto Press, North York, 1966).CrossRefGoogle Scholar
[20]Xu, M. Y., ‘Half-transitive graphs of prime-cube order’, J. Algebraci Combin. 1 (1992), 275282.CrossRefGoogle Scholar
[21]Xu, M. Y., ‘Automorphism groups and isomorphisms of Cayley digraphs’, Discrete Math. 182 (1998), 309319.CrossRefGoogle Scholar