Hostname: page-component-76c49bb84f-xk4dl Total loading time: 0 Render date: 2025-07-05T08:28:02.063Z Has data issue: false hasContentIssue false

At the crossroads of holomorphic dynamic and operator theory: spectral properties of composition operators on $\mathrm {Hol}(\mathbb {B}_N)$

Published online by Cambridge University Press:  11 June 2025

Lucas Oger*
Affiliation:
https://ror.org/03x42jk29Université Gustave Eiffel, LAMA, (UMR 8050), UPEM, UPEC, CNRS, F-77454, Marne-la-Vallée, France

Abstract

We study the class of composition operators acting on the Fréchet space $\mathrm {Hol}(\mathbb {B}_N)$ of all holomorphic maps on the unit ball of $\mathbb {C}^N$. We describe the conditions to make these operators continuous, invertible and compact. We also do the spectral study of these operators, depending on the nature of its symbol.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This research is partly supported by the Bézout Labex, funded by ANR, reference ANR-10-LABX-58.

References

Abate, M., Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Commenda di Rende (Italy), Mediterranean Press, 1989.Google Scholar
Alexander, H. and Wermer, J., Several complex variables and Banach algebras. 3rd ed., volume 35 of Graduate Texts in Mathematics, Springer, New York, NY, 1998. https://doi.org/10.1007/b97591.Google Scholar
Arendt, W., Bernard, E., Célariès, B., and Chalendar, I., Denjoy-Wolff theory and spectral properties of weighted composition operators on $Hol(D)$ . Ill. J. Math. 66(2022), no. 4, 463489. https://doi.org/10.1215/00192082-10235589.Google Scholar
Arendt, W., Bernard, E., Célariès, B., and Chalendar, I., Spectral properties of weighted composition operators on $Hol(D)$ induced by rotations . Indiana Univ. Math. J. 72(2021), no. 5, 17891820. https://doi.org/10.1512/iumj.2023.72.9511.Google Scholar
Arendt, W., Célariès, B., and Chalendar, I., In Koenigs’ footsteps: diagonalization of composition operators . J. Funct. Anal. 278(2020), no. 2, 108313. https://doi.org/10.1016/j.jfa.2019.108313.Google Scholar
Arosio, L., Canonical models for the forward and backward iteration of holomorphic maps . J. Geom. Anal. 27(2017), no. 2, 11781210. https://doi.org/10.1007/s12220-016-9714-y.Google Scholar
Arosio, L. and Bracci, F., Canonical models for holomorphic iteration . Trans. Amer. Math. Soc. 5(2016), no. 368, 33053339. https://doi.org/10.1090/tran/6593.Google Scholar
Baker, I. N. and Pommerenke, C., On the iteration of analytic functions in a half-plane II . J. Lond. Math. Soc., II. Ser. 20(1979), 255258. https://doi.org/10.1112/jlms/s2-20.2.255.Google Scholar
Banach, S., Théorie des opérations linéaires. Chelsea. VII, New York, NY, 1955, p. 254.Google Scholar
Bayart, F. and Charpentier, S., Hyperbolic composition operators on the ball . Trans. Am. Math. Soc. 365(2013), no. 2, 911938. https://doi.org/10.1090/S0002-9947-2012-05646-7.Google Scholar
Bernard, E., Semi-groupes d’opérateurs de compositions pondérés. Ph.D. thesis, Université Gustave Eiffel, 2022.Google Scholar
Bourbaki, N., Éléments de mathématique. Théories spectrales. Chapitres 1 et 2. Springer, Cham, 2nd revised and updated edition, 2019. https://doi.org/10.1007/978-3-030-14064-9.Google Scholar
Bourdon, P. S., Spectra of some composition operators and associated weighted composition operators . J. Oper. Theory 67(2012), no. 2, 537560.Google Scholar
Bracci, F., Contreras, M. D., and Díaz-Madrigal, S., Continuous semigroups of holomorphic self-maps of the unit disc, Springer Monographs in Mathematics, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-36782-4.Google Scholar
Chalendar, I. and Partington, J. R., Weighted composition operators: isometries and asymptotic behaviour . J. Oper. Theory 86(2021), no. 1, 189201. https://doi.org/10.7900/jot.2020feb28.2292.Google Scholar
Conway, J. B., Functions of one complex variable, volume 11 of Graduate Texts in Mathematics, Springer, Cham, 1973.Google Scholar
Cowen, C. C. and MacCluer, B. D., Composition operators on spaces of analytic functions. CRC Press, Boca Raton, FL, 1995.Google Scholar
Célariès, B., Opérateurs et semi-groupes d’opérateurs sur des espaces de fonctions holomorphes—Applications à la théorie de l’universalité. Ph.D. thesis, Institut Camille Jordan, Université Claude Bernard—Lyon 1, 2019.Google Scholar
Dunford, N. and Schwartz, J. T., Bade, W. G. and Bartle, R. G. (eds.), Linear operators. I. General theory, Pure and Applied Mathematics, Chapter VII, Interscience Publishers, New York, NY, 1958, xiv, 858 p. 1958.Google Scholar
Forelli, F., The isometries of ${H}^p$ . Can. J. Math. 16(1964), 721728. https://doi.org/10.4153/CJM-1964-068-3.Google Scholar
Horn, R. A. and Johnson, C. R., Matrix analysis. 2nd ed., Cambridge University Press, Cambridge, 2013.Google Scholar
Kallin, E., Polynomial convexity: The three spheres problem . In: Proc. Conf. Complex Analysis. Springer, Berlin, Heidelberg, Minneapolis, 1965, pp. 301304. 1964, 1965.Google Scholar
Kelley, J. L. and Namioka, I., Linear topological spaces. Reprint of the Van Nostrand ed, volume 36 of Graduate Texts in Mathematics, Springer, Cham, 1976.Google Scholar
Koenigs, G., Recherches sur les intégrales de certaines équations fonctionnelles . Ann. Sci École Normale Supérieure 3(1884), no. 1, 341.Google Scholar
Kubota, Y., Iteration of holomorphic maps of the unit ball into itself . Proc. Amer. Math. Soc. 88(1983), 476480. https://doi.org/10.2307/2044997.Google Scholar
Ma, T., Higher chain formula proved by combinatorics . Electron. J. Comb. 16(2009), no. 1, research paper n21.Google Scholar
MacCluer, B. D., Iterates of holomorphic self-maps of the unit ball in ${\mathbb{C}}^n$ . Mich. Math. J. 30(1983), 97106. https://doi.org/10.1307/mmj/1029002792.Google Scholar
Oka, K., Sur les fonctions analytiques de plusieurs variables. I. Domaines convexes par rapport aux fonctions rationnelles . J. Sci. Hiroshima Univ., Ser. A 6(1936), 245255.Google Scholar
Poincaré, H., Oeuvres, tome I. Gauthier-Villard, Paris, 1928, pp. XXXVI-CXXIX.Google Scholar
Pommerenke, C., On the iteration of analytic functions in a halfplane. I . J. Lond. Math. Soc., II. Ser. 19(1979), 439447. https://doi.org/10.1112/jlms/s2-19.3.439.Google Scholar
Raissy, J., Linearization of holomorphic germs with quasi-Brjuno fixed points . Math. Z. 264(2010), no. 4, 881900. https://doi.org/10.1007/s00209-009-0493-z.Google Scholar
Rudin, W., Function theory in the unit ball of ${\mathbb{C}}^n$ , volume 241 of Grundlehren der mathematischen Wissenschaften, Springer, Cham, 1980.Google Scholar
Shapiro, J. H., Composition operators and classical function theory, Universitext, Springer-Verlag, New York, NY, 1993.Google Scholar
Valiron, G., Sur l’itération des fonctions holomorphes dans un demi-plan . Bull. Sci. Math., II. Sér. 55(1931), 105128.Google Scholar
Weil, A., L’intégrale de Cauchy et les fonctions de plusieurs variables. Math. Ann. 111(1935), 178182. https://doi.org/10.1007/BF01472212.Google Scholar