Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:41:36.695Z Has data issue: false hasContentIssue false

TOPOLOGY OF INTERCONNECTION NETWORKS WITH GIVEN DEGREE AND DIAMETER

Published online by Cambridge University Press:  13 January 2010

GUILLERMO PINEDA-VILLAVICENCIO*
Affiliation:
Centre for Informatics and Applied Optimization, University of Ballarat, University Drive, Mount Helen, Victoria 3353, Australia (email: work@guillermo.com.au)
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

References

[1]Bannai, E. and Ito, T., ‘On finite Moore graphs’, J. Math. Sci. Univ. Tokyo 20 (1973), 191208.Google Scholar
[2]Biggs, N. L., Algebraic Graph Theory, 2nd edn (Cambridge University Press, Cambridge, 1993).Google Scholar
[3]Delorme, C., Jørgensen, L. K., Miller, M. and Pineda-Villavicencio, G., ‘On bipartite graphs of defect 2’, European J. Combin. 30(4) (2009), 798808.CrossRefGoogle Scholar
[4]Delorme, C., Jørgensen, L. K., Miller, M. and Pineda-Villavicencio, G., ‘On bipartite graphs of diameter 3 and defect 2’, J. Graph Theory 61(4) (2009), 271288.CrossRefGoogle Scholar
[5]Exoo, G. and Jajcay, R., ‘Dynamic cage survey’, Electron. J. Combin. (2008), 148. Dynamic survey DS16.Google Scholar
[6]Feit, W. and Higman, G., ‘The nonexistence of certain generalized polygons’, J. Algebra 1 (1964), 114131.CrossRefGoogle Scholar
[7]Miller, M. and Pineda-Villavicencio, G., ‘Complete catalogue of graphs of maximum degree 3 and defect at most 4’, Discrete Appl. Math. 157(13) (2009), 29832996.CrossRefGoogle Scholar
[8]Miller, M. and Širáň, J., ‘Moore graphs and beyond: a survey of the degree/diameter problem’, Electron. J. Combin. (2005), 161. Dynamic survey DS14.CrossRefGoogle Scholar
[9]Pineda-Villavicencio, G., ‘Non-existence of bipartite graphs of diameter at least 4 and defect 2’, submitted.Google Scholar
[10]Pineda-Villavicencio, G., Gómez, J., Miller, M. and Pérez-Rosés, H., ‘New largest known graphs of diameter 6’, Networks 53(4) (2009), 315328.CrossRefGoogle Scholar
[11]Pineda-Villavicencio, G. and Miller, M., ‘On graphs of maximum degree 3 and defect 4’, J. Combin. Math. Combin. Comput. 65 (2008), 2531.Google Scholar
[12]Singleton, R. C., ‘On minimal graphs of maximum even girth’, J. Combin. Theory 1(3) (1966), 306332.CrossRefGoogle Scholar