Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T18:42:18.506Z Has data issue: false hasContentIssue false

Précis on The Cognitive-Emotional Brain

Published online by Cambridge University Press:  10 June 2014

Luiz Pessoa*
Affiliation:
Department of Psychology, University of Maryland, College Park, MD 20742pessoa@umd.eduhttp://www.emotioncognition.org

Abstract

In The Cognitive-Emotional Brain (Pessoa 2013), I describe the many ways that emotion and cognition interact and are integrated in the brain. The book summarizes five areas of research that support this integrative view and makes four arguments to organize each area. (1) Based on rodent and human data, I propose that the amygdala's functions go beyond emotion as traditionally conceived. Furthermore, the processing of emotion-laden information is capacity limited, thus not independent of attention and awareness. (2) Cognitive-emotional interactions in the human prefrontal cortex (PFC) assume diverse forms and are not limited to mutual suppression. Particularly, the lateral PFC is a focal point for cognitive-emotional interactions. (3) Interactions between motivation and cognition can be seen across a range of perceptual and cognitive tasks. Motivation shapes behavior in specific ways – for example, by reducing response conflict or via selective effects on working memory. Traditional accounts, by contrast, typically describe motivation as a global activation independent of particular control demands. (4) Perception and cognition are directly influenced by information with affective or motivational content in powerful ways. A dual competition model outlines a framework for such interactions at the perceptual and executive levels. A specific neural architecture is proposed that embeds emotional and motivational signals into perception and cognition through multiple channels. (5) A network perspective should supplant the strategy of understanding the brain in terms of individual regions. More broadly, in a network view of brain architecture, “emotion” and “cognition” may be used as labels of certain behaviors, but will not map cleanly into compartmentalized pieces of the brain.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, Y., Osada, T., Sporns, O., Watanabe, T., Matsui, T., Miyamoto, K. & Miyashita, Y. (2012) Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cerebral Cortex 22(7):1586–92. doi: 10.1093/cercor/bhr234.Google Scholar
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B. & Gabrieli, J. D. (2006) Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron 50(3):507–17.Google Scholar
Alexander, W. H. & Brown, J. W. (2011) Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience 14(10):1338–44.CrossRefGoogle ScholarPubMed
Anderson, M. L., Kinnison, J. & Pessoa, L. (2013) Describing functional diversity of brain regions and brain networks. NeuroImage 73:5058.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. (2010) Functional-anatomic fractionation of the brain's default network. Neuron 65(4):550–62.CrossRefGoogle ScholarPubMed
Anticevic, A., Repovs, G. & Barch, D. M. (2010) Resisting emotional interference: Brain regions facilitating working memory performance during negative distraction. Cognitive, Affective, and Behavioral Neuroscience 10(2):159–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20498341.Google Scholar
Arnsten, A. F. (2009) Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews Neuroscience 10(6):410–22.CrossRefGoogle ScholarPubMed
Aslan, B. & Zech, G. (2005) New test for the multivariate two-sample problem based on the concept of minimum energy. Journal of Statistical Computation and Simulation 75(2):109–19.Google Scholar
Averbeck, B. B. & Seo, M. (2008) The statistical neuroanatomy of frontal networks in the macaque. PLoS Computational Biology 4(4):e1000050. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18389057.Google Scholar
Awh, E., Belopolsky, A. V. & Theeuwes, J. (2012) Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences 16(8):437–43.Google Scholar
Baluch, F. & Itti, L. (2011) Mechanisms of top-down attention. Trends in Neurosciences 34(4):210–24.CrossRefGoogle ScholarPubMed
Barbas, H. (1995) Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neuroscience and Biobehavioral Reviews 19(3):449510.CrossRefGoogle ScholarPubMed
Barbas, H. & Pandya, D. N. (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. Journal of Comparative Neurology 286(3):353–75. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2768563.CrossRefGoogle ScholarPubMed
Bargh, J. A. & Morsella, E. (2008) The unconscious mind. Perspectives in Psychological Science 3(1):7379. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18584056.Google Scholar
Barrett, L. F. & Bar, M. (2009) See it with feeling: Affective predictions during object perception. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 364(1521):1325–34. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19528014.Google Scholar
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M. & Grafton, S. T. (2011) Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Science of the United States of America 108(18):7641–46.Google Scholar
Basten, U., Stelzel, C. & Fiebach, C. J. (2011) Trait anxiety modulates the neural efficiency of inhibitory control. Journal of Cognitive Neuroscience 23(10):3132–45.Google Scholar
Beck, S. M., Locke, H. S., Savine, A. C., Jimura, K. & Braver, T. S. (2010) Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS ONE 5(2):e9251. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20169080.CrossRefGoogle ScholarPubMed
Bilder, R. M., Sabb, F. W., Parker, D. S., Kalar, D., Chu, W. W., Fox, J., Freimer, N. B. & Poldrack, R. A. (2009) Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry 14(4–5):419–50.CrossRefGoogle ScholarPubMed
Bishop, S. (2007) Neurocognitive mechanisms of anxiety: An integrative account. Trends in Cognitive Sciences 11(7):307–16. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17553730.CrossRefGoogle ScholarPubMed
Bishop, S. (2009) Trait anxiety and impoverished prefrontal control of attention. Nature Neuroscience 12(1):9298. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19079249.Google Scholar
Bishop, S., Duncan, J., Brett, M. & Lawrence, A. D. (2004) Prefrontal cortical function and anxiety: Controlling attention to threat-related stimuli. Nature Neuroscience 7(2):184–88. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14703573.CrossRefGoogle ScholarPubMed
Borgatti, S. P. (2005) Centrality and network flow. Social Networks 27(1):5571.Google Scholar
Braver, T. S. (2012) The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences 16(2):106–13.Google Scholar
Braver, T. S., Gray, J. R. & Burgess, G. C. (2007) Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. In: Variation in working memory, ed. Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A. & Towse, J. N., pp. 76106. Oxford University Press.Google Scholar
Bressler, S. L. & Menon, V. (2010) Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences 14(6):277–90. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20493761.Google Scholar
Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A. & Johnson, K. A. (2009) Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. Journal of Neuroscience 29(6):1860–73.Google Scholar
Bullmore, E. & Sporns, O. (2009) Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10(3):186–98.Google Scholar
Bush, G., Luu, P. & Posner, M. I. (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences 4(6):215–22.Google Scholar
Cacioppo, J. T. & Tassinary, L. G. (1990) Inferring psychological significance from physiological signals. American Psychologist 45(1):1628. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2297166.CrossRefGoogle ScholarPubMed
Cavada, C., Company, T., Tejedor, J., Cruz-Rizzolo, R. J. & Reinoso-Suarez, F. (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral Cortex 10(3):220–42. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10731218.CrossRefGoogle ScholarPubMed
Chelazzi, L., Perlato, A., Santandrea, E. & Della Libera, C. (2013) Rewards teach visual selective attention. Vision Research 85:5872.Google Scholar
Choi, J. M., Padmala, S. & Pessoa, L. (2012) Impact of state anxiety on the interaction between threat monitoring and cognition. NeuroImage 59(2):1912–23.Google Scholar
Christakis, N. A. & Fowler, J. H. (2007) The spread of obesity in a large social network over 32 years. New England Journal of Medicine 357(4):370–79.Google Scholar
Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A. & Braver, T. S. (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience 16(9):1348–55.Google Scholar
Corbetta, M. & Shulman, G. L. (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience 3(3):201–15.Google Scholar
Craig, A. D. (2002) How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews Neuroscience 3(8):655–66. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12154366.Google Scholar
Craig, A. D. (2009) How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience 10(1):5970. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19096369.CrossRefGoogle Scholar
Desimone, R. & Duncan, J. (1995) Neural mechanisms of selective visual attention. Annual Review of Neuroscience 18:193222. doi: 10.1146/annurev.ne.18.030195.001205.Google Scholar
Devinsky, O., Morrell, M. J. & Vogt, B. A. (1995) Contributions of anterior cingulate cortex to behaviour. Brain 118(Pt 1):279306. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7895011.Google Scholar
Dolcos, F., Iordan, A. D. & Dolcos, S. (2011) Neural correlates of emotion-cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology 23(6):669–94.Google Scholar
Dolcos, F. & McCarthy, G. (2006) Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience 26(7):2072–79. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16481440.Google Scholar
Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. (2008) A dual-networks architecture of top-down control. Trends in Cognitive Sciences 12(3):99105. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18262825.Google Scholar
Drevets, W. C. & Raichle, M. E. (1998) Reciprocal suppression of regional cerebral blood flow during emotional versus higher cognitive processes: Implications for interactions between emotion and cognition. Cognition and Emotion 12(3):353–85.CrossRefGoogle Scholar
Duffy, E. (1962) Activation and behavior. Wiley. Available at: http://books.google.com/books?id=ufEMAAAAIAAJ.Google Scholar
Duncan, J., Emslie, H., Williams, P., Johnson, R. & Freer, C. (1996) Intelligence and the frontal lobe: The organization of goal-directed behavior. Cognitive Psychology 30(3):257303. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8660786.Google Scholar
Engelmann, J. B., Damaraju, E. C., Padmala, S. & Pessoa, L. (2009) Combined effects of attention and motivation on visual task performance: Transient and sustained motivational effects. Frontiers in Human Neuroscience 3(4). doi: 10.3389/neuro.3309.3004.2009.Google Scholar
Engelmann, J. B. & Pessoa, L. (2007) Motivation sharpens exogenous spatial attention. Emotion 7(3):668–74. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17683222.Google Scholar
Erk, S., Kleczar, A. & Walter, H. (2007) Valence-specific regulation effects in a working memory task with emotional context. NeuroImage 37(2):623–32. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17570686.CrossRefGoogle Scholar
Estrada, E. & Hatano, N. (2008) Communicability in complex networks. Physical Review E 77(3):036111.Google Scholar
Etkin, A., Egner, T. & Kalisch, R. (2011) Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences 15(2):8593. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21167765.Google Scholar
Etkin, A. & Wager, T. D. (2007) Functional neuroimaging of anxiety: A meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry 164(10):1476–88. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17898336.Google Scholar
Evans, J. St. B. T. (2008) Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology 59(1):255–78.Google Scholar
Eysenck, M. W. & Derakshan, N. (2011) New perspectives in attentional control theory. Personality and Individual Differences 50(7):955–60.Google Scholar
Eysenck, M. W., Derakshan, N., Santos, R. & Calvo, M. G. (2007) Anxiety and cognitive performance: Attentional control theory. Emotion 7(2):336–53. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17516812.Google Scholar
Fales, C. L., Barch, D. M., Burgess, G. C., Schaefer, A., Mennin, D. S., Gray, J. R. & Braver, T. S. (2008) Anxiety and cognitive efficiency: Differential modulation of transient and sustained neural activity during a working memory task. Cognitive, Affective, & Behavioral Neuroscience 8(3):239–53. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18814461.Google Scholar
Fecteau, J. H. & Munoz, D. P. (2006) Salience, relevance, and firing: A priority map for target selection. Trends in Cognitive Sciences 10(8):382–90. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16843702.Google Scholar
Furey, M. L., Pietrini, P. & Haxby, J. V. (2000) Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290(5500):2315–19.Google Scholar
Furey, M. L., Pietrini, P., Haxby, J. V. & Drevets, W. C. (2008) Selective effects of cholinergic modulation on task performance during selective attention. Neuropsychopharmacology 33(4):913–23.CrossRefGoogle ScholarPubMed
Gilbert, A. M. & Fiez, J. A. (2004) Integrating rewards and cognition in the frontal cortex. Cognitive, Affective, and Behavioral Neuroscience 4(4):540–52. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15849896.Google Scholar
Goldman-Rakic, P. S., Leranth, C., Williams, S. M., Mons, N. & Geffard, M. (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America 86(22):9015–19.Google Scholar
Grossberg, S. (1980) How does a brain build a cognitive code? Psychological Review 87(1):151.Google Scholar
Grossberg, S. (1982) A psychophysiological theory of reinforcement, drive, motivation, and attention. Journal of Theoretical Neurobiology 1:286369.Google Scholar
Grossberg, S. & Levine, D. S. (1987) Neural dynamics of attentionally modulated Pavlovian conditioning: Blocking, interstimulus interval, and secondary reinforcement. Applied Optics 26(23):5015–30.Google Scholar
Grossberg, S. & Paine, R. W. (2000) A neural model of cortico-cerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Networks 13(8–9):999–46. Available at: http://www.sciencedirect.com/science/article/B6T08-41XM6VW-14/1/dc43f337daad9ddb5b5dc7f46d898564.Google Scholar
Guimera, R. & Nunes Amaral, L. A. (2005) Functional cartography of complex metabolic networks. Nature 433(7028):895900. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15729348.CrossRefGoogle ScholarPubMed
Harsay, H. A., Cohen, M. X., Oosterhof, N. N., Forstmann, B. U., Mars, R. B. & Ridderinkhof, K. R. (2011) Functional connectivity of the striatum links motivation to action control in humans. Journal of Neuroscience 31(29):10701–11.Google Scholar
Hickey, C., Chelazzi, L. & Theeuwes, J. (2010) Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience 30(33):11096–103.Google Scholar
Horvitz, J. C. (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–56. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10727783.CrossRefGoogle ScholarPubMed
Hull, C. L. (1943) Principles of behavior: An introduction to behavior theory. Appleton-Century-Crofts. Available at: http://books.google.com/books?id=kcxXAAAAYAAJ.Google Scholar
Jimura, K., Locke, H. S. & Braver, T. S. (2010) Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America 107(19):8871–76. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20421489.Google Scholar
Kastner, S. & Ungerleider, L. G. (2000) Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience 23:315–41.Google Scholar
Kelso, J. & Engstrøm, D. A. (2006) The complementary nature. MIT Press.Google Scholar
Keren, G. & Schul, Y. (2009) Two is not always better than one: A critical evaluation of two-system theories. Perspectives on Psychological Science 4(6):533–38.CrossRefGoogle ScholarPubMed
Kinnison, J., Padmala, S., Choi, J. M. & Pessoa, L. (2012) Network analysis reveals increased integration during emotional and motivational processing. Journal of Neuroscience 32(24):8361–72.Google Scholar
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E. & Makse, H. A. (2010) Identification of influential spreaders in complex networks. Nature Physics 6(11):888–93.Google Scholar
Kobayashi, S., Kawagoe, R., Takikawa, Y., Koizumi, M., Sakagami, M. & Hikosaka, O. (2007) Functional differences between macaque prefrontal cortex and caudate nucleus during eye movements with and without reward. Experimental Brain Research 176:341–55. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16902776.Google Scholar
Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M. & Hikosaka, O. (2002) Influence of reward expectation on visuospatial processing in macaque lateral prefrontal cortex. Journal of Neurophysiology 87(3):1488–98. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11877521.CrossRefGoogle ScholarPubMed
Kouneiher, F., Charron, S. & Koechlin, E. (2009) Motivation and cognitive control in the human prefrontal cortex. Nature Neuroscience 12(7):939–45.CrossRefGoogle ScholarPubMed
Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W. & Woldorff, M. G. (2011) The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21680848.Google Scholar
Krebs, R. M., Boehler, C. N. & Woldorff, M. G. (2010) The influence of reward associations on conflict processing in the Stroop task. Cognition 117(3):341–47. doi: 10.1016/j.cognition.2010.08.018.Google Scholar
Kruglanski, A. W., Erbs, H. P., Pierro, A., Mannetti, L. & Chun, W. Y. (2006) On parametric continuities in the world of binary either ors. Psychological Inquiry 17:153–65.Google Scholar
Lang, P. J., Davis, M. & Ohman, A. (2000) Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders 61(3):137–59. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11163418.Google Scholar
Lavie, N. (1995) Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance 21(3):451–68. Available at: http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=7790827.Google Scholar
Leon, M. I. & Shadlen, M. N. (1999) Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron 24(2):415–25. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10571234.Google Scholar
Lindquist, K. A. & Barrett, L. F. (2012) A functional architecture of the human brain: Emerging insights from the science of emotion. Trends in Cognitive Sciences 16(11):533–40.Google Scholar
Liu, X., Hairston, J., Schrier, M. & Fan, J. (2011a) Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews 35(5):1219–36.Google Scholar
Liu, Y. Y., Slotine, J. J. & Barabasi, A. L. (2011b) Controllability of complex networks. Nature 473(7346):167–73.Google Scholar
Loftus, E. F. & Klinger, M. R. (1992) Is the unconscious smart or dumb? American Psychologist 47(6):761–65. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1616173.Google Scholar
Logan, G. D. (1988) Automaticity, resources, and memory: Theoretical controversies and practical implications. Human Factors 30(5):583–98. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=3065212.Google Scholar
MacLean, P. D. (1970) The triune brain, emotion, and scientific bias. In: The neurosciences second study program, ed. Schmitt, F. O., pp. 336–49. Rockefeller University Press.Google Scholar
MacLean, P. D. (1990) The triune brain in evolution: Role in paleocerebral functions. Plenum Press.Google Scholar
Marder, E. & Goaillard, J. M. (2006) Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience 7(7):563–74.CrossRefGoogle ScholarPubMed
Mather, M. & Sutherland, M. R. (2011) Arousal-biased competition in perception and memory. Perspectives on Psychological Science 6(2):114–33.Google Scholar
Mathews, A. & Mackinstosh, B. (1998) A cognitive model of selective processing in anxiety. Cognitive Therapy and Research 22(6):539–60.Google Scholar
Maunsell, J. H. (2004) Neuronal representations of cognitive state: Reward or attention? Trends in Cognitive Sciences 8(6):261–65. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15165551.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., Silva, J. A., Tekell, J. L., Martin, C. C., Lancaster, J. L. & Fox, P. T. (1999) Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry 156(5):675–82. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10327898.Google Scholar
McIntosh, A. R. (2000) Towards a network theory of cognition. Neural Networks 13(8–9):861–70. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11156197.Google Scholar
Mechias, M. L., Etkin, A. & Kalisch, R. (2010) A meta-analysis of instructed fear studies: Implications for conscious appraisal of threat. NeuroImage 49(2):1760–68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19786103.Google Scholar
Mesulam, M. M. (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology 28:597613.Google Scholar
Meunier, D., Achard, S., Morcom, A. & Bullmore, E. (2009) Age-related changes in modular organization of human brain functional networks. NeuroImage 44(3):715–23.Google Scholar
Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A. & Wager, T. D. (2000) The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology 41(1):49100. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10945922.Google Scholar
Mizuhiki, T., Richmond, B. J. & Shidara, M. (2012) Encoding of reward expectation by monkey anterior insular neurons. Journal of Neurophysiology 107(11):29963007.Google Scholar
Mobbs, D., Yu, R., Rowe, J. B., Eich, H., FeldmanHall, O. & Dalgleish, T. (2010) Neural activity associated with monitoring the oscillating threat value of a tarantula. Proceedings of the National Academy of Sciences of the United States of America 107(47):20582–86. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21059963.Google Scholar
Modha, D. S. & Singh, R. (2010) Network architecture of the long-distance pathways in the macaque brain. Proceedings of the National Academy of Sciences of the United States of America 107(30):13485–90. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=20628011.Google Scholar
Mohanty, A., Gitelman, D. R., Small, D. M. & Mesulam, M. M. (2008) The spatial attention network interacts with limbic and monoaminergic systems to modulate motivation-induced attention shifts. Cerebral Cortex 18(11):2604–13. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18308706.Google Scholar
Moors, A. & De Houwer, J. (2006) Automaticity: A theoretical and conceptual analysis. Psychological Bulletin 132(2):297326. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16536645.Google Scholar
Morecraft, R. J. & Tanji, J. (2009) Cingulofrontal interactions and the cingulate motor areas. In: Cingulate neurobiology and disease, ed. Vogt, B. A., pp. 113–44. Oxford University Press.Google Scholar
Moussa, M. N., Vechlekar, C. D., Burdette, J. H., Steen, M. R., Hugenschmidt, C. E. & Laurienti, P. J. (2011) Changes in cognitive state alter human functional brain networks. Frontiers in Human Neuroscience 5:83.Google Scholar
Naqvi, N. H. & Bechara, A. (2009) The hidden island of addiction: The insula. Trends in Neurosciences 32(1):5667.Google Scholar
Nauta, W. J. H. (1971) The problem of the frontal lobe: A reinterpretation. Journal of Psychiatric Research 8:167–87.Google Scholar
Navon, D. (1984) Resources – A theoretical soup stone? Psychological Review 91(2):216–34.Google Scholar
Neisser, U. (1976) Cognition and reality. Freeman.Google Scholar
Newell, A. (1973) You can't play 20 questions with nature and win: Projective comments on the papers of this symposium. In: Visual information processing, ed. Chase, W., pp. 283308. Academic Press.Google Scholar
Newman, M. (2005) A measure of betweenness centrality based on random walks. Social networks 27(1):3954.Google Scholar
Newman, M. (2010) Networks: An introduction. Oxford University Press.Google Scholar
Norman, D. A. & Bobrow, D. G. (1975) On data-limited and resource-limited processes. Cognitive Psychology 7:4464.Google Scholar
Norman, D. A. & Shallice, T. (1986) Attention to action: Willed and automatic control of behavior. In: Consciousness and self-regulation, ed. Davidson, R. J., Schwartz, G. E. & Shapiro, D., pp. 118. Plenum.Google Scholar
Padmala, S., Lim, S.-L. & Pessoa, L. (2010) Pulvinar and affective significance: Responses track moment-to-moment visibility. Frontiers in Human Neuroscience 4:19.CrossRefGoogle ScholarPubMed
Padmala, S., and Pessoa, L. (2010) Interactions between cognition and motivation during response inhibition. Neuropsychologia 48(2):558–65.Google Scholar
Padmala, S. & Pessoa, L. (2011) Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience 23(11):3419–32.Google Scholar
Panksepp, J. (1998) Affective neuroscience: The foundations of human and animal emotions. Oxford University Press.Google Scholar
Papez, J. W. (1937) A proposed mechanism of emotion. Archives of Neurology and Psychiatry 38:725–43.Google Scholar
Pashler, H. (1998) The psychology of attention. TheMIT Press.Google Scholar
Passingham, R. E., Stephan, K. E. & Kotter, R. (2002) The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience 3(8):606–16. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12154362.Google Scholar
Paulus, M. P. & Stein, M. B. (2006) An insular view of anxiety. Biological Psychiatry 60(4):383–87.Google Scholar
Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R. & Gottlieb, J. (2009) Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience 29(36):11182–91.Google Scholar
Pessoa, L. (2005) To what extent are emotional visual stimuli processed without attention and awareness? Current Opinion in Neurobiology 15(2):188–96. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15831401.Google Scholar
Pessoa, L. (2008) On the relationship between emotion and cognition. Nature Reviews. Neuroscience 9(2):148–58. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18209732.Google Scholar
Pessoa, L. (2009) How do emotion and motivation direct executive control? Trends in Cognitive Sciences 13(4):160–66.Google Scholar
Pessoa, L. (2013) The cognitive-emotional brain. From interactions to integration. MIT Press.Google Scholar
Pessoa, L. (2014) Understanding brain networks and brain organization. Physics of Life Reviews 11(3):400435.Google Scholar
Pessoa, L. & Adolphs, R. (2010) Emotion processing and the amygdala: From a “low road” to “many roads” of evaluating biological significance. Nature Reviews. Neurosciences 11(11):773–83. doi: 10.1038/nrn2920. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20959860.Google Scholar
Pessoa, L. & Engelmann, J. B. (2010) Embedding reward signals into perception and cognition. Frontiers in Neuroscience 4:17. doi: 10.3389/fnins.2010.00017.CrossRefGoogle ScholarPubMed
Pessoa, L., Gutierrez, E., Bandettini, P. & Ungerleider, L. (2002) Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron 35(5):975–87. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12372290.Google Scholar
Pessoa, L., Padmala, S., Kenzer, A. & Bauer, A. (2012) Interactions between cognition and emotion during response inhibition. Emotion 12(1):192–97.Google Scholar
Platt, M. L. & Huettel, S. A. (2008) Risky business: The neuroeconomics of decision making under uncertainty. Nature Neuroscience 11(4):398403.CrossRefGoogle ScholarPubMed
Pochon, J. B., Levy, R., Fossati, P., Lehericy, S., Poline, J. B., Pillon, B., Le Bihan, D. & Dubois, B. (2002) The neural system that bridges reward and cognition in humans: An fMRI study. Proceedings of the National Academy of Sciences of the United States of America 99(8):5669–74. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11960021.Google Scholar
Poldrack, R. A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science 10(2):5963.Google Scholar
Poldrack, R. A. (2011) Inferring mental states from neuroimaging data: From reverse inference to large-scale decoding. Neuron 72(5):692–97.Google Scholar
Pourtois, G., Schettino, A. & Vuilleumier, P. (2013) Brain mechanisms for emotional influences on perception and attention: What is magic and what is not. Biological Psychology 92(3):492512. doi: 10.1016/j.biopsycho.2012.02.007.Google Scholar
Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N. & Petersen, S. E. (2013) Evidence for hubs in human functional brain networks. Neuron 79(4):798813.Google Scholar
Pribram, K. H. & McGuinness, D. (1975) Arousal, activation, and effort in the control of attention. Psychological Review 82(2):116–49. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=1096213.Google Scholar
Price, C. J. & Friston, K. J. (2005) Functional ontologies for cognition: The systematic definition of structure and function. Cognitive Neuropsychology 22(3/4):262–75.Google Scholar
Redgrave, P. & Gurney, K. (2006) The short-latency dopamine signal: A role in discovering novel actions? Nature Reviews Neuroscience 7(12):967–75. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17115078.Google Scholar
Redgrave, P., Prescott, T. J. & Gurney, K. (1999) Is the short-latency dopamine response too short to signal reward error? Trends in Neurosciences 22(4):146–51. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10203849.Google Scholar
Rempel-Clower, N. L. & Barbas, H. (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cerebral Cortex 10(9):851–65. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10982746.Google Scholar
Robbins, T. W. & Everitt, B. J. (2007) A role for mesencephalic dopamine in activation: Commentary on Berridge (2006). Psychopharmacology (Berl) 191(3):433–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16977476.Google Scholar
Robinson, J. L., Laird, A. R., Glahn, D. C., Blangero, J., Sanghera, M. K., Pessoa, L., Fox, P. M., Uecker, A., Friehs, G., Young, K. A., Griffin, J. L., Lovallo, W. R. & Fox, P. T. (2012) The functional connectivity of the human caudate: An application of meta-analytic connectivity modeling with behavioral filtering. NeuroImage 60(1):117–29.Google Scholar
Rubinov, M. & Sporns, O. (2010) Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3):1059–69.Google Scholar
Salamone, J. D., Correa, M., Farrar, A. M., Nunes, E. J. & Pardo, M. (2009) Dopamine, behavioral economics, and effort. Frontiers in Behavioral Neuroscience 3:13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19826615.Google Scholar
Saleem, K. S., Kondo, H. & Price, J. L. (2008) Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. Journal of Comparative Neurology 506(4):659–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/18067141.Google Scholar
Samanez-Larkin, G. R., Gibbs, S. E., Khanna, K., Nielsen, L., Carstensen, L. L. & Knutson, B. (2007) Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience 10(6):787–91.Google Scholar
Sarter, M., Gehring, W. J. & Kozak, R. (2006) More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews 51(2):145–60.Google Scholar
Sarter, M., Hasselmo, M. E., Bruno, J. P. & Givens, B. (2005) Unraveling the attentional functions of cortical cholinergic inputs: Interactions between signal-driven and cognitive modulation of signal detection. Brain Research Reviews 48(1):98111.Google Scholar
Schneidman, E., Berry, M. J. II, Segev, R. & Bialek, W. (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087):1007–12.Google Scholar
Serences, J. T. & Yantis, S. (2006) Selective visual attention and perceptual coherence. Trends in Cognitive Sciences 10(1):3845. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16318922.Google Scholar
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J. & Davidson, R. J. (2011) The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience 12(3):154–67. Available at: http://www.ncbi.nlm.nih.gov/pubmed/21331082.CrossRefGoogle ScholarPubMed
Shiffrin, R. M. & Schneider, W. (1977) Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review 84(2):127.Google Scholar
Simmons, A., Strigo, I., Matthews, S. C., Paulus, M. P. & Stein, M. B. (2006) Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biological Psychiatry 60(4):402409.Google Scholar
Singer, T., Critchley, H. D. & Preuschoff, K. (2009) A common role of insula in feelings, empathy and uncertainty. Trends in Cognitive Sciences 13(8):334–40. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19643659.Google Scholar
Small, D. M., Gitelman, D., Simmons, K., Bloise, S. M., Parrish, T. & Mesulam, M. M. (2005) Monetary incentives enhance processing in brain regions mediating top-down control of attention. Cerebral Cortex 15(12):1855–65. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15746002.Google Scholar
Somerville, L. H. & Casey, B. J. (2010) Developmental neurobiology of cognitive control and motivational systems. Current Opinion in Neurobiology 20(2):236–41.Google Scholar
Stuss, D. T. & Knight, R. T., eds. (2002) Principles of frontal lobe function. Oxford University Press.Google Scholar
Summerfield, C. & Koechlin, E. (2009) Decision making and prefrontal executive function. MIT Press.Google Scholar
Taylor, S. F., Welsh, R. C., Wager, T. D., Phan, K. L., Fitzgerald, K. D. & Gehring, W. J. (2004) A functional neuroimaging study of motivation and executive function. NeuroImage 21(3):1045–54.Google Scholar
Thompson, E. (2007) Mind in life: Biology, phenomenology, and the sciences of the mind. Harvard University Press.Google Scholar
Thompson, E. & Varela, F. J. (2001) Radical embodiment: Neural dynamics and consciousness. Trends in Cognitive Sciences 5(10):418–25. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11707380.Google Scholar
Tombu, M. N., Asplund, C. L., Dux, P. E., Godwin, D., Martin, J. W. & Marois, R. (2011) A Unified attentional bottleneck in the human brain. Proceedings of the National Academy of Science of the United States of America 108(33):13426–31.Google Scholar
Toro, R., Fox, P. T. & Paus, T. (2008) Functional coactivation map of the human brain. Cerebral Cortex 18(11):2553–59.Google Scholar
Uddin, L. Q., Kinnison, J., Pessoa, L. & Anderson, M. L. (2013) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. Journal of Cognitive Neuroscience 26(1):1627.Google Scholar
Van Snellenberg, J. X. & Wager, T. D. (2010) Cognitive and motivational functions of the human prefrontal cortex. In: Luria's legacy in the 21st century, ed. Christensen, A.-L., Goldberg, E. & Bougakov, D., pp. 3061. Oxford University Press.Google Scholar
Varela, F. J., Thompson, E. & Rosch, E. (1991) The embodied mind: Cognitive science and human experience. MIT Press.Google Scholar
Vlachos, I., Aertsen, A. & Kumar, A. (2012) Beyond statistical significance: Implications of network structure on neuronal activity. PLoS Computational Biology 8(1):e1002311.Google Scholar
Vogt, B. A., ed. (2008) Cingulate neurobiology and disease. Oxford University Press.Google Scholar
Walton, M. E., Rudebeck, P. H., Bannerman, D. M. & Rushworth, M. F. (2007) Calculating the cost of acting in frontal cortex. Annals of the New York Academy of Sciences 1104:340–56. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17360802.Google Scholar
Wang, J., Zuo, X. & He, Y. (2010) Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience 4:16.Google Scholar
Watanabe, M. (1990) Prefrontal unit activity during associative learning in monkey. Experimental Brain Research 80:296309.Google Scholar
Watanabe, M. (1996) Reward expectancy in primate prefrontal neurons. Nature 382:629–32.Google Scholar
Whalen, P. J. (1998) Fear, vigilance, and ambiguity: Initial neuroimaging studies of the human amygdala. Current Directions in Psychological Science 7(6):177–88.Google Scholar
Wolfe, J. M. (1994) Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review 1(2):202–38.Google Scholar
Yarkoni, T., Poldrack, R. A., Van Essen, D. C. & Wager, T. D. (2010) Cognitive neuroscience 2.0: Building a cumulative science of human brain function. Trends in Cognitive Sciences 14(11):489–96.Google Scholar
Zald, D. H. & Rauch, S. L. (2007) The orbitofrontal cortex. Oxford University Press.Google Scholar
Zikopoulos, B. & Barbas, H. (2012) Pathways for emotions and attention converge on the thalamic reticular nucleus in primates. Journal of Neuroscience 32(15):5338–50.Google Scholar
Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C. & Berns, G. S. (2004) Human striatal responses to monetary reward depend on saliency. Neuron 42(3):509–17. Available at: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15134646.Google Scholar
Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O. & Milham, M. P. (2012) Network centrality in the human functional connectome. Cerebral Cortex 22(8):1862–75.Google Scholar