To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The use of a proteomic approach to investigate changes in the milk proteome is growing and has parralleled the increasing technological developments in proteomics moving from early investigation using a gel-based two-dimensional separation approach to more quantitative method of current focus applying chromatography and mass spectrometry. Proteomic approaches to investigate lactational performance have made substantial findings especially in the alterations in lactation during mastitis. An experimental model of Streptococcus uberis infection of the mammary gland has been used as a means to determine change not only in the milk proteome, but also in the peptidome and in the metabolome caused by the infection. Examination of the peptidome, that is the peptides of less than 25 kDa in molecular weight, demonstrated an increase in small peptides most of which were casein degradation products but also included small bioactive peptides such as mammary-associated serum amyloid A3 (MSAA3). The peptidome has also been shown to differ depending on the causative bacteria of naturally occuring mastitis. The use of a non-gel-based relative quantitative proteomic methodology has revealed major changes in the protein component of milk in mastitis. The S. uberis infection lead to increases in the concentrations of proteins such as cathelicidins, haptoglobin, MSAA3 and decreases milk content of proteins such as xanthine oxidase, butyrophilin and β-1,4-galactosyltransferase. Analysis of all protein change data identified the acute phase, coagulation and complement pathways as well as proteins related to bile acid metabolism as being most modified. Examination of the small molecular weight organic molecules of milk using a metabolomic approach identified an increase in the content in milk during mastitis of bile acids such as taurochenodeoxycholic acid. Notable changes were also found in metabolites responding to infection of the mammary gland. Carbohydrate and nucleic acid metabolites were reduced, whereas lipid and nitrogen containing metabolites were increased. The latter included increases in amino acids along with di and tri peptides, likely to be the result of casein degradation. The use of proteomics and other omic technology is in its infancy in investigation of lactational parameters, but can already provide additional insight into the changes involved in disease and will have further value in physiological and nutritional investigation of lactation.
Accumulating evidence supports that the hormone prolactin (PRL) is galactopoietic in dairy ruminants. Accordingly, the inhibition of PRL secretion by the dopamine agonists quinagolide and cabergoline causes a sharp decline in milk production and could be useful in several critical periods. First, PRL inhibition may reduce the incidence during the periparturient period of metabolic disorders caused by the abrupt increase in energy demand for milk production. Metabolic disturbances can be lessened by reducing milk output by milking once a day or incompletely in the first few days of lactation. The injection of cows with quinagolide for the first 4 days of lactation reduced milk production during the first week of lactation without any residual effects. Blood glucose and calcium concentrations were higher and β-hydroxybutyric acid concentration was lower in the quinagolide-treated cows. Second, PRL inhibition may help sick or injured lactating cows, considering that they can fall into severe negative energy balance when they are unable to consume enough feed to support their milk production. This leads to a weakened immune system and increased susceptibility to diseases. When cows were subjected to feed restriction and were treated with quinagolide, the decrease in milk production was accelerated without any residual effects. The quinagolide-treated cows had higher glucose and lower β-hydroxybutyric acid and non-esterified fatty acid concentrations than the control cows did. Third, PRL inhibition may facilitate drying-off in high-yielding cows, because they are often dried off while still producing significant quantities of milk, which delays mammary involution and increases risk of mastitis. Therefore, strategies that reduce milk production before drying-off and accelerate mammary gland involution could be an important management tool. In this context, inhibition of PRL was utilised to accelerate mammary gland dry-off. Quinagolide decreased milk production within the first day of treatment, and both quinagolide and cabergoline induced more rapid changes in several markers of mammary gland involution after drying-off. In addition, quinagolide improved the animals’ resistance to intramammary infection. These results suggest that the inhibition of PRL could be a strategy for facilitating drying-off, reducing metabolic stress during the postpartum period, and alleviating acute nutritional stress during illness without compromising the overall productivity of dairy ruminants.
The increasing lactational performance of dairy cows over the last few decades is closely related to higher nutritional requirements. The decrease in dry matter intake during the peripartal period results in a considerable mobilisation of body tissues (mainly fat reserves and muscle mass) to compensate for the prevailing lack of energy and nutrients. Despite the activation of adaptive mechanisms to mobilise nutrients from body tissues for maintenance and milk production, the increased metabolic load is still a risk factor for animal health. The prevalence of production diseases, particularly subclinical ketosis is high in the early lactation period. Increased β-hydroxybutyrate (BHB) concentrations further depress gluconeogenesis, feed intake and the immune system. Despite a variety of adaptation responses to nutrient and energy deficit that exists among dairy cows, an early and non-invasive detection of developing metabolic disorders in milk samples would be useful. The frequent and regular milking process of dairy cows creates the ability to obtain samples at any stage of lactation. Routine identification of biomarkers accurately characterising the physiological status of an animal is crucial for decisive strategies. The present overview recapitulates established markers measured in milk that are associated with metabolic health of dairy cows. Specifically, measurements of milk fat, protein, lactose and urea concentrations are evaluated. Changes in the ratio of milk fat to protein may indicate an increased risk for rumen acidosis and ketosis. The costly determination of individual fatty acids in milk creates barriers for grouping of fatty acids into saturated, mono- and polyunsaturated fatty acids. Novel approaches include the potential of mid-IR (MIR) based predictions of BHB and acetone in milk, although the latter are not directly measured, but only estimated via indirect associations of concomitantly altered milk composition during (sub)clinical ketosis. Although MIR-based ketone body concentrations in milk are not suitable to monitor the metabolic status of the individual cow, they provide an estimate of the overall herd or specific groups of animals earlier in a particular stage of lactation. Management decisions can be made earlier and animal health status improved by adjusting diet composition.
Milk production by the sow is a major factor limiting the growth and survival of her litter. Understanding the process of morphogenesis of the sow’s mammary gland and the factors that regulate mammary development are important for designing successful management tools that may enhance milk production. Primordia of the mammary glands are first observable in the porcine embryo at approximately 23 days of gestation. The glands then progress through a series of morphologically distinct developmental stages such that, at birth, each mammary gland is composed of the teat, an organized fat pad and two separate lactiferous ducts each with a few ducts branching into the fat pad. The glands continue to grow slowly until about 90 days of age when the rate of growth increases significantly. The increased rate of mammary gland growth coincides with the appearance of large ovarian follicles and an increase in circulating estrogen. After puberty, the continued growth of the gland and elongation and branching of the duct system into the fat pad takes place in response to the elevated levels of estrogen occurring as part of the estrous cycles. After conception, parenchymal mass of each gland increases slowly during early pregnancy and then grows increasingly rapidly during the final trimester. This growth is in response to estrogen, progesterone, prolactin and relaxin. Lobuloalveolar development occurs primarily during late pregnancy. By parturition, the fat pad of the mammary gland has been replaced by colostrum-secreting epithelial cells that line the lumen of the alveoli, lobules and small ducts. All mammary glands develop during pregnancy, however, the extent of development is dependent on the location of the mammary gland on the sow’s underline. The mammary glands undergo significant functional differentiation immediately before and after farrowing with the formation of colostrum and the transition through the stages of lactogenesis. Further growth of the glands during lactation is stimulated by milk removal. Individual glands may grow or transiently regress in response to the intensity of suckling during the initial days postpartum. Attempts to enhance milk production by manipulation of mammary development at stages before lactation generally have met with limited success. A more in depth understanding of the processes regulating porcine mammary gland morphogenesis at all stages of development is needed to make further progress.
Nursing piglets are entirely dependent, for their micronutrient provisions, upon in utero, colostrum and milk transfers from the dam. An adequate maternal transfer of micronutrients is all the more important during these periods which, in fact, lasts for approximately half the life cycle (conception to slaughter) of modern pigs. The present study aimed to set up a simple approach to assess the maternal perinatal transfer of vitamins and trace elements in sows. Prenatal transfer (R-u) was estimated as limited, passive or active using the ratio between pre-colostral serum concentrations of a given micronutrient in newborn piglets and corresponding pre-farrowing values in sows. Efficiency of the postnatal transfer (R-c) was estimated from the ratio between serum concentrations of post- and pre-colostral micronutrients in piglets. Data from literature (12 studies) were used for vitamins A, D, E, C, folic acid and B12, whereas vitamins B2, B3, B6 and B8 as well as Zn, Fe, Cu and Se were generated from a trial where blood sera from 20 sows, and their litter were collected during the perinatal period. In sow trial, statistical t tests were used to determine if ratios differed from 1. Prenatal transfer was active and in favour of piglets (R-u > 1, P < 0.03) for Zn and vitamins B6 and B8 (sow trial) as well as for vitamins C and B12 (literature data). This transfer was limited (R-u < 1, P < 0.01) for vitamin B2, Fe, Cu and Se (sow trial) and for vitamins A, E, D and folic acid (literature data) whereas it was passive for vitamin B3 (R-u = 1, P > 0.37). After birth, the early postnatal transfer through colostrum was active towards piglets for most micronutrients but vitamins B6 and B8 (R-c < 1, P < 0.01). Globally, the perinatal transfer (combination of R-u and R-c) was favourable to the neonatal piglets for most micronutrients except for vitamins A and D as well as Fe, Cu and Se whereas there is apparently a barrier for prenatal transfer which is not compensated by the colostrum provision to neonatal piglets. Then, post-colostral concentrations of these micronutrients in piglets remain below prenatal levels of their dam. Neonatal strategies of micronutrient provision are known for Fe (intramuscular injection) and Se (sow milk enrichment). Further studies are needed to assess the importance of the unfavourable perinatal transfer for Cu and vitamins A and D for piglet robustness later in life.
Low atmospheric pressure stunning (LAPS) is a novel approach to pre-slaughter stunning of chickens using progressive hypobaric hypoxia by the application of gradual decompression (280s cycle) according to a set of prescribed pressure curves. Low atmospheric pressure stunning produces a non-recovery state. Concerns have been raised relating to the possible pathological and welfare consequences of expansion of air in the body during LAPS. In a randomised trial, we compared the gross pathology of broilers exposed to LAPS with a control group euthanised by intravenous injection of pentobarbital sodium (60 mixed sex broilers per treatment). The birds were exposed to each treatment in triplets and all birds were subject to necropsy examination to detect and score (1 to 5, minimal to severe) haemorrhagic lesions or congestion for all major organs and cavities (e.g. air sacs, joints, ears and heart) as well as external assessment for product quality (e.g. wing tips). Behavioural data (latency to loss of posture and motionless) and chamber cycle data (temperature, humidity, pressure and oxygen availability) confirmed that LAPS had been applied in a manner representative of the commercial process. All of the organs observed were structurally intact for both treatment groups. No lesions were observed in the external ears, oral cavity, tracheal lumen, crop and air sacs of birds from either treatment group. There was no difference between treatments in the wingtips, nasal turbinates, thymus, biceps femoralis and colon. Haemorrhagic lesions were observed in the calvaria, brains, hearts and lungs of both treatment groups, but lesions in these areas were more severe in the LAPS treatment group. It was not possible to distinguish between pathological changes induced by decompression or recompression. In the barbiturate group, more severe haemorrhagic lesions were observed in the superficial pectoral muscles as well as greater congestion of the infraorbital sinuses, liver, spleens, duodenum, kidneys and gonads. These findings provide evidence that LAPS did not result in distension of the intestines and air sacs sufficient to cause changes, which were grossly visible on postmortem examination. There was also no evidence of barotrauma in the ears and sinuses. The pathological changes observed in the barbiturate treatment were as expected based on barbiturate toxicity. Low atmospheric pressure stunning appears to produce pathological changes by a variety of well-established mechanisms, and while these pathological data have limited value as welfare indicators, the results confirm that organ integrity was not compromised by the process.
Gentle handling seems to elicit positive states in sheep. The study investigated whether spatial distance alters sheep responses to brushing and whether spatial distance is influenced by reactivity. Twenty Romane ewes were assessed in three sessions: in Sessions 1 and 3, one grid separated the test animal from pen mates, with no distance between them, and in Session 2 two grids separated the test animal from pen mates by a distance of about 1.7 m. Ewes had been genetically selected for low (R−) or high (R+) behavioural reactivity to social isolation. Body postures, head orientation, ear postures, closed and half-closed eyes, tail wagging and feeding behaviour, in addition to heart rate (HR) and HR variability, as the root mean square of successive differences (RMSSD), standard deviation of all normal-to-normal (NN) intervals (SDNN), RMSSD/SDNN ratio and ratio between low-frequency (LF) and high-frequency (HF) powers (LF/HF) were assessed. Data were analysed using generalized linear models and linear mixed models. Session, genetic line and phase (pre-, brushing and post-brushing) were considered fixed effects. Increased distance in Session 2 might not have influenced ewes’ responses. Fewer changes in ear postures were noted in Session 3 than 1 (P<0.01), suggesting that ewes were more relaxed in Session 3. The RMSSD/SDNN ratio was higher mainly during brushing in Sessions 1 and 3 (P<0.05), indicating that ewes were more relaxed during brushing, and at no distance between pen mates. However, spatial distance influenced R− and R+ ewes’ responses; R+ ewes performed more asymmetric ear postures in Session 2 than 1 and 3 (P<0.01), and in Session 3 than 1 (P<0.01), indicating that spatial distance had a negative effect on R+ ewes. Low reactive ewes spent less time on horizontal ear postures in Session 2 than 1 and 3 (P<0.01), and R+ ewes spent more time on horizontal postures in Session 1 than 3 (P<0.01). Curiously, R− ewes spent more time eating and ruminating in Session 3 than 1 (P<0.01), and in Session 2 than 1 and 3 (P<0.01), whereas R+ ewes ate and ruminated more in Session 1 than 3 (P<0.05). Higher HR was found among R− ewes in Session 2 than 1 and 3, and in Session 3 than 1 (P<0.01). High reactive ewes showed higher HR in Session 1 than 3 (P<0.01). The findings suggest that the social context might influence sheep responses to gentle handling, and the effects depend on their reactivity traits.
Many local breeds have become endangered due to their substitution by high-yielding breeds. To conserve local breeds, effective development strategies need to be investigated. The aim of this study was to explore conservation and development strategies based on quantified strengths, weaknesses, opportunities and threats (SWOT) for two local cattle breeds from Northern Germany, namely the German Angler (GA) and Red Dual-Purpose cattle (RDP). The data comprised 158 questionnaires regarding both breeds’ SWOT, which were answered by 78 farmers of GA and 80 farmers of RDP. First, data were analysed using the SWOT-Analytic Hierarchy Process (AHP) method, which combines the qualitative strategic decision tool of SWOT analysis and the quantitative tool of AHP. Second, prioritised SWOT factors were discussed with stakeholders in order to form final conservation and development strategies at breed level. For GA prioritised strengths were daily gain, meat quality, milk production and the usage of new biotechnologies, weaknesses were genetic gain in milk production and inbreeding, opportunities were organic farming and breed-specific characteristics and threats were milk prices and dependency regarding the dairy business. Consequently, three conservation and development strategies were formed: (1) changing relative weights and the relevant breeding goal to drift from milk to meat, (2) increasing genetic gain and control the rate of inbreeding by the implementation of specific selection programs and (3) selection of unique and breed characteristic components on product level, that is, milk-fat and fine muscle fibers. For RDP defined strengths were robustness, high adaptability for different housing systems and a balanced dual-purpose of milk and meat, weaknesses were inbreeding, breed extinction, genomic selection with young bulls and milk yield, opportunities were organic farming and dual-purpose aspects and threats were milk and decreasing beef cattle prices. Thus, three conservation and development strategies were identified: (1) adjust relative weights and the relevant breeding goal to balance milk and meat yield, (2) increasing genetic gain and avoid extinction by implementing targeted selection programs and (3) selection of unique and breed characteristic traits on breed level, that is, environmental robustness. Quantified SWOT establish a basis for the exploration of conservation and development strategies at breed level. Explored strategies are promising even if the stakeholder approach was limited for small populations regarding a small number of stakeholder groups. The used approach reflects farmers’ individual convenience better than existing quantitative strategy decision tools on their own.
Rabbit commercial maternal lines are usually selected for litter size (LS) and paternal lines for growth rate (GR). Line OR_LS was selected by ovulation rate (OR) and LS to improve LS more efficiently. In this study, growth traits of line OR_LS were evaluated by estimating the correlated response on weaning weight (WW), slaughter weight (SW) and GR during fattening period as well as their variability (DWW, DSW and DGR, respectively). Data were analyzed using Bayesian inference methods. Heritability estimates were low for growth traits (0.09, 0.13 and 0.14 for WW, SW and GR, respectively) and negligible for growth traits variability (0.01, 0.004 and 0.01 for DWW, DSW and DGR, respectively). Moderate common litter effect ratio (c2; 0.35, 0.28 and 0.27) and low maternal effect ratio (m2; 0.11, 0.05 and 0.01) were obtained for WW, SW and GR, respectively. Both c2 and m2 were lower at slaughter than at weaning. In addition, low common litter effect and negligible maternal effect were observed for growth traits variability. Genetic correlations between LS and both growth traits and their variability were close to zero. Positive genetic correlations were observed between OR and growth traits (0.19, 0.38 and 0.36 for WW, SW and GR, respectively) as well as between OR and growth traits variability (0.35, 0.62 and 0.20 for DWW, DSW and DGR, respectively). Positive correlated responses in both periods were obtained for growth traits, WW, SW and GR (0.037, 0.156 and 0.110 kg, respectively). The correlated response found in growth traits might be due to the positive genetic correlations between OR and these traits. However, selection for OR and LS using independent culling levels did not modify the growth traits variability. Therefore, no negative consequences on growth traits can be expected in current commercial maternal lines.
Grains rich in starch constitute the primary source of energy for both pigs and humans, but there is incomplete understanding of physiological mechanisms that determine the extent of digestion of grain starch in monogastric animals including pigs and humans. Slow digestion of starch to produce glucose in the small intestine (SI) leads to undigested starch escaping to the large intestine where it is fermented to produce short-chain fatty acids. Glucose generated from starch provides more energy than short-chain fatty acids for normal metabolism and growth in monogastrics. While incomplete digestion of starch leads to underutilised feed in pigs and economic losses, it is desirable in human nutrition to maintain consistent body weight in adults. Undigested nutrients reaching the ileum may trigger the ileal brake, and fermentation of undigested nutrients or fibre in the large intestine triggers the colonic brake. These intestinal brakes reduce the passage rate in an attempt to maximise nutrient utilisation, and lead to increased satiety that may reduce feed intake. The three physiological mechanisms that control grain digestion and feed intake are: (1) gastric emptying rate; (2) interplay of grain digestion and passage rate in the SI controlling the activation of the ileal brake; and (3) fermentation of undigested nutrients or fibre in the large intestine activating the colonic brake. Fibre plays an important role in influencing these mechanisms and the extent of their effects. In this review, an account of the physiological mechanisms controlling the passage rate, feed intake and enzymatic digestion of grains is presented: (1) to evaluate the merits of recently developed methods of grain/starch digestion for application purposes; and (2) to identify opportunities for future research to advance our understanding of how the combination of controlled grain digestion and fibre content can be manipulated to physiologically influence satiety and food intake.
Estimating the feed intake of grazing herbivores is critical for determining their nutrition, overall productivity and utilization of grassland resources. A 17-day indoor feeding experiment was conducted to evaluate the potential use of Medicago sativa as a natural supplement for estimating the total feed intake of sheep. A total of 16 sheep were randomly assigned to four diets (four sheep per diet) containing a known amount of M. sativa together with up to seven forages common to typical steppes. The diets were: diet 1, M. sativa + Leymus chinensis + Puccinellia distans; diet 2, species in diet 1 + Phragmites australis; diet 3, species in diet 2 + Chenopodium album + Elymus sibiricus; and diet 4, species in diet 3 + Artemisia scoparia + Artemisia tanacetifolia. After faecal marker concentrations were corrected by individual sheep recovery, treatment mean recovery or overall recovery, the proportions of M. sativa and other dietary forages were estimated from a combination of alkanes and long-chain alcohols using a least-square procedure. Total intake was the ratio of the known intake of M. sativa to its estimated dietary proportion. Each dietary component intake was obtained using total intake and the corresponding dietary proportions. The estimated values were compared with actual values to assess the estimation accuracy. The results showed that M. sativa exhibited a distinguishable marker pattern in comparison to the other dietary forage species. The accuracy of the dietary composition estimates was significantly (P < 0.001) affected by both diet diversity and the faecal recovery method. The proportion of M. sativa and total intake across all diets could be accurately estimated using the individual sheep or the treatment mean recovery methods. The largest differences between the estimated and observed total intake were 2.6 g and 19.2 g, respectively, representing only 0.4% and 2.6% of the total intake. However, they were significantly (P < 0.05) biased for most diets when using the overall recovery method. Due to the difficulty in obtaining individual sheep recovery under field conditions, treatment mean recovery is recommended. This study suggests that M. sativa, a natural roughage instead of a labelled concentrate, can be utilized as a dietary supplement to accurately estimate the total feed intake of sheep indoors and further indicates that it has potential to be used in steppe grassland of northern China, where the marker patterns of M. sativa differ markedly from commonly occurring plant species.
The diurnal feeding patterns of dairy cows affects the 24 h robot utilisation of pasture-based automatic milking systems (AMS). A decline in robot utilisation between 2400 and 0600 h currently occurs in pasture-based AMS, as cow feeding activity is greatly reduced during this time. Here, we investigate the effect of a temporal variation in feed quality and quantity on cow feeding behaviour between 2400 and 0600 h as a potential tool to increase voluntary cow trafficking in an AMS at night. The day was allocated into four equal feeding periods (0600 to 1200, 1200 to 1800, 1800 to 2400 and 2400 to 0600 h). Lucerne hay cubes (CP = 19.1%, water soluble carbohydrate = 3.8%) and oat, ryegrass and clover hay cubes with 20% molasses (CP = 11.8%, water soluble carbohydrate = 10.7%) were offered as the ‘standard’ and ‘preferred’ (preference determined previously) feed types, respectively. The four treatments were (1) standard feed offered ad libitum (AL) throughout 24 h; (2) as per AL, with preferred feed replacing standard feed between 2400 and 0600 h (AL + P); (3) standard feed offered at a restricted rate, with quantity varying between each feeding period (20:10:30:60%, respectively) as a proportion of the (previously) measured daily ad libitum intake (VA); (4) as per VA, with preferred feed replacing standard feed between 2400 and 0600 h (VA + P). Eight non-lactating dairy cows were used in a 4 × 4 Latin square design. During each experimental period, treatment cows were fed for 7 days, including 3 days habituation and 4 days data collection. Total daily intake was approximately 8% greater (P < 0.001) for the AL and AL + P treatments (23.1 and 22.9 kg DM/cow) as compared with the VA and VA + P treatments (21.6 and 20.9 kg DM/cow). The AL + P and VA treatments had 21% and 90% greater (P < 0.001) dry matter intake (DMI) between 2400 and 0600 h, respectively, compared with the AL treatment. In contrast, the VA + P treatment had similar DMI to the VA treatment. Our experiment shows ability to increase cow feeding activity at night by varying feed type and quantity, though it is possible that a penalty to total DMI may occur using VA. Further research is required to determine if the implementation of variable feed allocation on pasture-based AMS farms is likely to improve milking robot utilisation by increasing cow feeding activity at night.
Oxidative stress occurs when oxidant production exceeds the antioxidant capacity to detoxify the reactive intermediates or to repair the resulting damage. Feed efficiency has been associated with mitochondrial function due to its impact on cell energy metabolism. However, mitochondria are also recognized as a major source of oxidants. The aim of this study was to determine lipid and protein oxidative stress markers, and gene and protein expression as well as activity of antioxidant enzymes in the liver of steers of divergent residual feed intake (RFI) phenotypes. Hereford steers (n = 111) were evaluated in post-weaning 70 days standard test for RFI. Eighteen steers exhibiting the greatest (n = 9; high-RFI) and the lowest (n = 9; low-RFI) RFI values were selected for this study. After the test, steers were managed together under grazing conditions until slaughter when they reached the slaughter body weight. At slaughter, hepatic samples were obtained, were snap-frozen in liquid nitrogen and stored at −80°C until analyses. Hepatic thiobarbituric acid reactive species and protein carbonyls were greater (P = 0.05) and hepatic 4-hydroxynonenal protein adducts tended (P = 0.10) to be greater for high- than low-RFI steers. Hepatic gene expression glutathione peroxidase 4, glutamate–cysteine ligase catalytic subunit and peroxiredoxin 5 mRNA was greater (P ≤ 0.05) and glutathione peroxidase 3 mRNA tended (P = 0.10) to be greater in low- than high-RFI steers. Hepatic protein expression and enzyme activity of manganese superoxide dismutase and glutathione peroxidase enzyme activity tended (P ≤ 0.10) to be greater for low- than high-RFI steers. High-efficiency steers (low-RFI) probably had better hepatic oxidative status which was strongly associated with greater antioxidant ability near to the oxidant production site and, therefore, reduced oxidative stress of the liver. Decreased hepatic oxidative stress would reduce maintenance requirements due to a lower protein and lipid turnover and better efficiency in the use of energy.
Dairy systems are a source of pollutant emissions, such as greenhouse gases (GHG) and NH3 that are associated with impacts on the environment. Gas emissions in barns are related mainly to diet intake and chemical composition, N excretion and manure management. A reduction in dietary N is known to be an effective way to reduce N excretion and the resulting NH3 emissions. However, most studies consider manure in liquid form with frequent removal from the barn. In deep litter systems, several processes can occur during the accumulation of solid manure that result in variable gas emissions. The objective of this experiment was to investigate the influence of the interaction between dietary CP (low or high) and manure management (liquid or solid) on gas emissions (NH3, N2O, CH4) at the barn level. Dietary treatments provided either low (LowN; 12% CP) or high (HighN; 18% CP) degradable protein to modify the amount of total ammonia nitrogen (TAN) excreted. The cows were housed for two 8-week periods in two mechanically ventilated rooms equipped to manage manure either in liquid (LM; slurry) or solid form (SM; deep litter). In the LM treatment, N balance was measured for 4 days. As expected, animals fed the LowN diet ingested 35% less N and excreted 65% less N in their urine, with no reduction in faecal N excretion and N secretion in milk. On the LowN diet, excretion of urea-N and NH3-N emissions were reduced regardless of the manure management. On the HighN diet, urinary urea-N excretion was three times as high, while NH3-N emissions were 3.0 and 4.5 times as high in LM and SM, respectively. Manure management strongly influenced CH4-C emissions, which were 30% higher in SM than in LM, due to the accumulation of litter. Moreover, gas emissions from solid manure increased over the accumulation period, except for NH3 on the LowN diet. Finally, our results suggest that methods used for national inventories would become more accurate by considering the variability in TAN excretion, which is the primary factor that influences NH3 emissions.
The increasing attention for global warming is likely to contribute to the introduction of policies or other incentives to reduce greenhouse gas (GHG) emissions related to livestock production, including dairy. The dairy sector is an important contributor to GHG emissions. Clinical mastitis (CM), an intramammary infection, results in reduced milk production and fertility, increases culling and mortality of cows and, therefore, has a negative impact on the efficiency (output/input) of milk production. This may increase GHG emissions per unit of product. Our objective was to estimate the impact of CM in dairy cows on GHG emissions of milk production for the Dutch situation. A dynamic stochastic simulation model was developed to simulate the dynamics and losses of CM for individual lactations. Cows receive a parity (1 to 5+), a milk production and a calving interval (CI). Based on the parity, cows have a risk of CM, with a maximum of three cases in a lactation. Pathogens causing CM were classified as gram-positive bacteria, gram-negative bacteria, or other. Based on the parity and pathogen combinations, cows had a reduced milk production, discarded milk, prolonged CI and a risk of removal (culling and mortality) that reduce productivity of dairy cows and therefore increase GHG emissions per unit of product. Using life cycle assessment, emissions of GHGs were estimated from cradle to farm gate for processes along the milk production chain that are affected by CM. Processes included were feed production, enteric fermentation, and manure management. Emissions of GHGs were expressed as kg CO2 equivalents per ton of fat-and-protein-corrected milk (kg CO2e/t FPCM). Emissions of cows with CM increased on average by 57.5 (6.2%) kg CO2e/t FPCM compared with cows without CM. This increase was caused by removal (39%), discarded milk (38%), reduced milk production (17%) and prolonged CI (6%). The GHG emissions increased by 48 kg CO2e/t FPCM for cows with one case of CM, by 69 kg CO2e/t FPCM for cows with two cases of CM and by 92 kg CO2e/t FPCM for cows with three cases of CM compared with cows without CM. Preventing CM can be an effective strategy for farmers to reduce GHG emissions and can contribute to sustainable development of the dairy sector, because this also can improve the income of farmers and the welfare of cows. The impact of CM on GHG emissions, however, will vary between farms due to environmental conditions and management practices.
The enrichment of meat with selenium is important to improve the intake of selenium by humans. The effects of supranutritional doses of sodium selenite or selenium-enriched yeast on performance, carcass characteristics and meat quality were evaluated using 63 Nellore cattle in a completely randomized design with two sources (sodium selenite and selenium-enriched yeast), three levels (0.3, 0.9 and 2.7 mg Se/kg DM) and control treatment (without addition of selenium). Final body weight (BW), average daily gain, dry matter intake and gain to feed ratio (G : F) at the end of 84 days of supplementation were not influenced by treatments (P>0.05). Values of pH, ribeye area, back fat thickness and marbling score were also not influenced by treatments (P>0.05). Dressing percentage was greater (P=0.02) in Nellore cattle supplemented with organic Se (58.70%) compared to animals supplemented with inorganic Se (57.94%). Hot carcass weight increased (P=0.05) with the increasing of Se levels in the diet. Colour, shear force (SF), cooking and drip loss remained unchanged (P>0.05); however thiobarbituric acid reactive substances was 15.51% higher with inorganic Se compared with organic Se. The selenium concentration in the meat of animals receiving organic selenium was higher (P<0.001) than that of animals receiving sodium selenite, at all levels (0.3; 0.9 and 2.7 mg/kg DM). The meat of animals receiving 2.7 mg of organic Se/kg of DM presented concentration of 372.7 μg Se/kg in the L.dorsi muscle, and the intake of 150 g of this meat by humans provides approximately 100% of the recommended Se intake (55 μg Se/day for adults). Therefore, the use of supranutritional doses of 2.7 mg Se/kg of DM, regardless of source, is a way of naturally producing selenium-enriched meat without compromising performance, carcass characteristics and quality of Nellore bovine meat.