To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
On many Australian commercial pig farms, groups of growing pigs are mass-medicated through their drinking water with selected antimicrobials for short periods to manage herd health. However, delivery of medication in drinking water cannot be assumed to deliver an equal dose to all animals in a group. There is substantial between-animal variability in systemic exposure to an antimicrobial (i.e. the antimicrobial concentration in plasma), resulting in under-dosing or over-dosing of many pigs. Three sources of this between-animal variability during a water medication dosing event are differences in: (1) concentration of the active constituent of the antimicrobial product in water available to pigs at drinking appliances in each pen over time, (2) medicated water consumption patterns of pigs in each pen over time, and (3) pharmacokinetics (i.e. oral bioavailability, volume of distribution and clearance between pigs and within pigs over time). It is essential that factors operating on each farm that influence the range of systemic exposures of pigs to an antimicrobial are factored into antimicrobial administration regimens to reduce under-dosing and over-dosing.
Recent studies highlighted the multiple positive and negative contributions of livestock to society. Livestock production, through its direct and indirect impacts on land use, is an important driver of services provision. Although a few studies provide an account on the multiple services in different livestock systems, there is still an important knowledge gap on the drivers that contribute to the differentiation of services provisioning across areas. We investigated the hypothesis that the current level of services has derived from past intensification trajectories of livestock. The objective of this study was to understand the influences of past changes in livestock, land-use and socio-economic variables on the current provision of social, environmental and cultural services by the livestock sector in France. We combined a long-term country-wide database on livestock intensification between 1938 and 2010 and a database on services provisioning in 2010. We used a set of multivariate methods to simultaneously analyse the changes in livestock intensification from 1938 to 2010 and the current level of services provisioning. Our analysis focused on a set of 60 French departments where livestock play a significant economic role in agricultural production. Our study revealed that the provision of services was spatially structured and based on three groups of departments, characterised by different rates of change in intensification variables. In the first group, ‘Intensive livestock areas’, the high level of employment in the livestock sector was mainly associated with high rates of change in monogastric stocking rates (+1045%) and milk productivity (+451%). In the second group, ‘Extensive livestock areas’, the high levels of environmental and cultural services were mainly associated with moderate rates of change in herbivores stocking rate (+95%) and the stability of grassland area (+13%). In the third group, ‘Transition areas’, the low provision of all services was associated with the decline in livestock due to crop expansion. This study provides knowledge to understand how past changes determined the current contribution of livestock areas in providing differentiated bundles of services, which might help steer the development of the current livestock sector towards more sustainable trajectories.
Cell-based meat, also called ‘clean’, lab, synthetic or in vitro meat, has attracted much media interest recently. Consumer demand for cellular meat production derives principally from concerns over environment and animal welfare, while secondary considerations include consumer and public health aspects of animal production, and food security. The present limitations to cellular meat production include the identification of immortal cell lines, availability of cost-effective, bovine-serum-free growth medium for cell proliferation and maturation, scaffold materials for cell growth, scaling up to an industrial level, regulatory and labelling issues and at what stage mixing of myo-, adipo- and even fibrocytes can potentially occur. Consumer perceptions that cell-based meat production will result in improvements to animal welfare and the environment have been challenged, with the outcome needing to wait until the processes used in cell-based meat are close to a commercial reality. Challenges for cell-based meat products include the simulation of nutritional attributes, texture, flavour and mouthfeel of animal-derived meat products. There is some question over whether consumers will accept the technology, but likely there will be acceptance of cell-based meat products, in particular market segments. Currently, the cost of growth media, industry scale-up of specific components of the cell culture process, intellectual property sharing issues and regulatory hurdles mean that it will likely require an extended period for cellular meat to be consistently available in high-end restaurants and even longer to be available for the mass market. The progress in plant-based meat analogues is already well achieved, with products such as the ImpossibleTM Burger and other products already available. These developments may make the development of cellular meat products obsolete. But the challenges remain of mimicking not only the nutritional attributes, flavour, shape and structure of real meat, but also the changes in regulation and labelling.
This communication assesses the use of a portable near infrared (NIR) instrument to measure quantitative (fatty acid profile) properties and qualitative (‘Premium’ and ‘Non-premium’) categories of individual Iberian pork carcasses at the slaughterhouse. Acorn-fed Iberian pigs have more unsaturated fats than pigs fed conventional compound feed. Recent advances in miniaturisation have led to a number of handheld NIR devices being developed, allowing processing decisions to be made earlier, significantly reducing time and costs. The most common methods used for assessing quality and authenticity of Iberian hams are analysis of the fatty acid composition of subcutaneous fat using gas chromatography and DNA analysis. In this study, NIR calibrations for fatty acids and classification as premium or non-premium ham, based on carcass fat measured in situ, were developed using a portable NIR spectrometer. The accuracy of the quantitative equations was evaluated through the standard error of cross validation or standard error of prediction of 0.84 for palmitic acid (C16:0), 0.94 for stearic acid (C18:0), 1.47 for oleic acid (C18:1) and 0.58 for linoleic acid (C18:2). Qualitative calibrations provided acceptable results, with up to 98% of samples (n = 234) correctly classified with probabilities ⩾0.9. Results indicated a portable NIR instrument has the potential to be used to measure quality and authenticity of Iberian pork carcasses.
Improving robustness of farm animals is one of the goals in breeding programmes. However, robustness is a complex trait and not measurable directly. The objective of this study was to quantify and characterize (elements of) robustness in growing pigs. Robustness can be analysed by examining the animal’s response to perturbations. Although the origin of perturbations may not be known, their effect on animal performance can be observed, for example, through changes in voluntary feed intake. A generic model and data analysis procedure was developed (1) to estimate the target trajectory of feed intake, which is the amount of feed that a pig desires to eat when it is not facing any perturbations; (2) to detect potential perturbations, which are deviations of feed intake from the estimated target trajectory; and (3) to characterize and quantify the response of the growing pigs to the perturbations using voluntary feed intake as response criterion. The response of a pig to a perturbation is characterized by four parameters. The start and end times of the perturbation are ‘imposed’ by the perturbing factor, while two other parameters describe the resistance and resilience potential of the pig. One of these describes the immediate reduction in daily feed intake at the start of the perturbation (i.e., a ‘resistance’ trait) while another parameter describes the capacity of the pig to adapt to the perturbation through compensatory feed intake to rejoin the target trajectory of feed intake (i.e., a ‘resilience’ trait). The procedure has been employed successfully to identify the target trajectory of feed intake in growing pigs and to quantify the pig’s response to a perturbation.
The pig industry faces many animal welfare issues. Among these, biting behaviour has a high incidence. It is indicative of an existing problem in biters and is a source of physical damage and psychological stress for the victims. We categorize this behaviour into aggressive and non-aggressive biting, the latter often being directed towards the tail. This review focusses specifically on predisposing factors in early life, comprising the prenatal and postnatal periods up to weaning, for the expression of aggressive and non-aggressive biting later in life. The influence of personality and coping style has been examined in a few studies. It varies according to these studies and, thus, further evaluation is needed. Regarding the effect of environmental factors, the number of scientific papers is low (less than five papers for most factors). No clear influence of prenatal factors has been identified to date. Aggressive biting is reduced by undernutrition, cross-fostering and socialization before weaning. Non-aggressive biting is increased by undernutrition, social stress due to competition and cross-fostering. These latter three factors are highly dependent on litter size at birth. The use of familiar odours may contribute to reducing biting when pigs are moved from one environment to another by alleviating the level of stress associated with novelty. Even though the current environment in which pigs are expressing biting behaviours is of major importance, the pre-weaning environment should be optimized to reduce the likelihood of this problem.
Fermented feeds are being considered as practical alternatives to antimicrobial growth promoters (AGP) supplemented in nursery pig diets. This study aimed to investigate health-promoting effects of fermented barley in weaned pigs challenged with Escherichia coli K88 +. A total of 37 piglets were weaned at 21 ± 1 day of age (6.41 ± 0.47 kg of BW) and assigned to either of the following five treatment groups: (1) unchallenged control (UCC; n = 7), (2) challenged control (CC; n = 7), (3) AGP (CC + 0.1% AGP; n = 7), (4) Ferm1 (challenged and fed homofermentative Lactobacillus plantarum (Homo)-fermented barley; n = 8) and (5) Ferm2 (challenged and fed heterofermentative L. buchneri (Hetero)-fermented barley; n = 8). The control diet included unfermented barley. Barley was fermented with either Homo or Hetero for 90 days under anaerobic conditions. On day 10, all pigs except those in UCC group were orally inoculated with E. coli K88 + (6 × 109 colony forming units/ml). The pre-planned orthogonal test was performed to compare (1) UCC and CC, (2) CC and AGP, (3) CC and Ferm1 + Ferm2, as well as (4) Ferm1 and Ferm2. Challenged control pigs showed shorter (P < 0.05) villus height (VH) in the duodenum and deeper (P < 0.05) crypt depth (CD) in the jejunum than UCC pigs. The AGP group had higher (P < 0.05) VH and lower (P < 0.05) IL-6 gene expression in the jejunum compared with CC group. Compared to CC, Ferm1 and Ferm2 had decreased (P < 0.05) CD in the duodenum, IL-6 gene expression in the jejunum and rectal temperature at 24 h post-challenge. Pigs fed fermented barley diets showed greater (P < 0.05) faecal abundance of Clostridium Cluster IV and Lactobacilli than those fed UCC diet. Ferm2-fed pigs showed lower (P < 0.05) concentrations of band cells, eosinophils and lymphocytes at 6, 24 and 48 h after challenge, respectively, and lower (P < 0.05) faecal abundance of Enterobacteriaceae 24 h after challenge than the Ferm1-fed pigs. In conclusion, the substitution of unfermented barley with fermented barley in a nursery diet showed similar results as those shown by AGP supplementation in terms of enhancing the intestinal morphology and modulating faecal microbiota composition, as well as down-regulating the pro-inflammatory cytokines; therefore, fermented barley can be a possible nutritional strategy for managing nursery pigs fed diets without in-feed AGP.
This article involved a broad search of applied sciences for milestone technologies we deem to be the most significant innovations applied by the North American pork industry, during the past 10 to 12 years. Several innovations shifted the trajectory of improvement or resolved significant production limitations. Each is being integrated into practice, with the exception being gene editing technology, which is undergoing the federal approval process. Advances in molecular genomics have been applied to gene editing for control of porcine reproductive and respiratory syndrome and to identify piglet genome contributions from each parent. Post-cervical artificial insemination technology is not novel, but this technology is now used extensively to accelerate the rate of genetic progress. A milestone was achieved with the discovery that dietary essential fatty acids, during lactation, were limiting reproduction. Their provision resulted in a dose-related response for pregnancy, pregnancy maintenance and litter size, especially in maturing sows and ultimately resolved seasonal infertility. The benefit of segregated early weaning (12 to 14 days of age) was realized for specific pathogen removal for genetic nucleus and multiplication. Application was premature for commercial practice, as piglet mortality and morbidity increased. Early weaning impairs intestinal barrier and mucosal innate immune development, which coincides with diminished resilience to pathogens and viability later in life. Two important milestones were achieved to improve precision nutrition for growing pigs. The first involved the updated publication of the National Research Council nutrient requirements for pigs, a collaboration between scientists from America and Canada. Precision nutrition advanced further when ingredient description, for metabolically available amino acids and net energy (by source plant), became a private sector nutrition product. The past decade also led to fortuitous discoveries of health-improving components in ingredients (xylanase, soybeans). Finally, two technologies converged to facilitate timely detection of multiple pathogens in a population: oral fluids sampling and polymerase chain reaction (PCR) for pathogen analysis. Most critical diseases in North America are now routinely monitored by oral fluid sampling and prepared for analysis using PCR methods.
With still limited information on vitamin requirements and considering that many commercial practices adopt dietary vitamin levels above the values suggested by nutritional tables, this study aimed to assess the effect of administering vitamin supplementation to sows in gestation and lactation and to their litters on the reproductive performance and body condition of the sows and on the performance and immune profile of the litters until slaughter. The trial was split into two phases. The first phase used 104 sows, assigned to be randomized to blocks according to parity, submitted until 21 days of lactation to two treatments: control–standard (standard levels of vitamins) and test–elevated (elevated levels of vitamins). Each sow and its respective farrow were considered an experimental unit. The sows underwent evaluations of body condition score, back fat thickness and reproductive performance. In the second phase, 60 barrows and 60 gilts at 21 days of age and mean initial weight of 5.33 ± 1.5 kg until slaughter at 164 days of age. The piglets were assigned to randomized blocks according to the weight and sex of the animals in a 2 × 2 factorial model, with 10 replicates per treatment, where a pen with three animals represented the experimental unit. Following the same treatments of the first phase, the piglets were evaluated for daily weight gain, daily feed intake, feed conversion, mortality rate and humoral immune response. Vitamin supplementation had no positive effects on the reproductive parameters or body composition of sows. However, it positively impacted the performance of the litters in the early nursery stage, but did not lead to superior effects on the immune responses to vaccination against circovirus or mycoplasma.
In general, one animal is considered dominant over another animal if it has won more fights than its opponent. Whether this difference in won and lost fights is significant is neglected in most studies. Thus, the present study evaluates the impact of two different calculation methods for dyadic interactions with a significant asymmetric outcome on the results of social network analysis regarding agonistic interactions of pigs in three different mixing events (weaned piglets, fattening pigs and gilts). Directly after mixing, all animals were video recorded for 17 (fattening pigs, gilts) and 28 h (weaned piglets), documenting agonistic interactions. Two calculation methods for significant dyads, that is, dyadic interactions with a clear dominant subordinate relationship in which one animal has won significantly more fights than its encounter, were proposed: pen individual limits were calculated by a sign test considering the differences of won and lost fights of all dyadic interactions in each pen; dyad individual limits were determined by a one-sided sign test for each individual dyad. For all data sets (ALL, including all dyadic interactions; PEN or DYAD, including only significant dyads according to pen or dyad individual limits), networks were built based on the information of initiator and receiver with the pigs as nodes and the edges between them illustrating attacks. General network parameters describing the whole network structure and centrality parameters describing the position of each animal in the network were calculated. Both pen and dyad individual limits revealed only a small percentage of significant dyads for weaned piglets (12.4% or 8.8%), fattening pigs (4.2% or 0.6%) and gilts (3.6% or 0.4%). The comparison between the data sets revealed only high Spearman’s rank correlation coefficients (rS) for the density, that is, percentage of possible edges that were actually present in the network, whereas the centrality parameters showed only moderate rS values (0.37 to 0.75). Thus, the rank order of the animals changed due to the exclusion of insignificant dyads, which shows that the results obtained from social network analysis are clearly influenced if insignificant dyads are excluded from the analyses. Due to the fact that the pen individual limits consider the overall level of agonistic interactions within each pen, this calculation method should be preferred over the dyad individual limits. Otherwise, too many animals in the group became isolated nodes with zero centrality for which no statement about their position within the network can be made.
A key concern in beef production is how to improve carcass and meat quality traits. Identifying the genomic regions and biological pathways that contribute to explaining variability in these traits is of great importance for selection purposes. In this study, genome wide-association (GWAS) and pathway-based analyses of carcass traits (age at slaughter (AS), carcass weight (CW), carcass daily gain (CDG), conformation score and rib-eye muscle area) and meat quality traits (pH, Warner-Bratzler shear force, purge loss, cooking loss and colour parameters (lightness, redness, yellowness, chroma, hue)) were conducted using genotype data from the ‘GeneSeek Genomic Profiler Bovine LD’ array in a cohort of 1166 double-muscled Piemontese beef cattle. The genome wide-association analysis was based on the GRAMMAR-GC approach and identified 37 significant single nucleotide polymorphisms (SNPs), which were associated with 12 traits (P<5 × 10−5). In particular, 14 SNPs associated with CW, CDG and AS were located at 38.57 to 38.94 Mb on Bos taurus autosome 6 and mapped within four genes, that is, Leucine Aminopeptidase 3, Family with Sequence Similarity 184 Member B, Non-SMC Condensin I Complex Subunit G and Ligand-Dependent Nuclear Receptor Corepressor-Like. Strong pairwise linkage disequilibrium was found in this region. For meat quality traits, most associations were 1 SNP per trait, except for a signal on BTA25 (at ~11.96 Mb), which was significant for four of the five meat colour parameters assessed. Gene-set enrichment analyses yielded significant results for six traits (right-sided hypergeometric test, false discovery rate <0.05). In particular, several pathways related to transmembrane transport (i.e., oxygen, calcium, ion and cation) were overrepresented for meat colour parameters. The results obtained provide useful information for genomic selection for beef production and quality in the Piemontese breed.
Guinea fowl production is increasing in developing countries and has a crucial role in the fight against poverty. However, the feed cost is very high, especially the soya bean meal cost, and farmers cannot afford to buy commercial feed. Consequently, animals do not receive feed adapted to their nutritional needs and they exhibit poor performance. The aim of this paper is to partially substitute soya bean meal by local by-products, discarded, in abundant supply and not used in human nutrition. French Galor guinea fowl (Numida meleagris) and local African guinea fowl (150 birds per breed) were reared for 16 weeks and fed the same starter diet for the initial 4 weeks. From 4 weeks of age, experimental birds from each breed were randomly assigned to three grower isoproteic and isolipidic dietary treatments, each containing five replications (floor pens); each replication included 10 birds of the same breed. The guinea fowl of each breed were fed either control grower diet using soya bean meal as the protein supplement GS, or trial grower diet GN (soya bean meal supplement partially substituted by 15% cashew nut (Anacardium occidentale) meal) or trial grower diet GH (soya bean meal supplement partially substituted by 15% hevea seed (Hevea brasiliensis) meal). The results indicated that hevea seed meal contained a high content of n-3 polyunsaturated fatty acids (PUFAs) (21.2% of total fatty acids (FAs)). The use of hevea seed meal in guinea fowl grower diet was found to exert no adverse effect on growth performance and carcass yield. However, the use of cashew nut meal led to negative effects on performance like daily weight gain and feed conversion ratio. Therefore, cashew nut meal cannot be considered as a suitable partial substitute for soya bean meal in diets. The use of hevea seed meal led to a very low abdominal fat proportion and low blood triglyceride and cholesterol content. Additionally, inclusion of dietary hevea seed meal resulted in guinea fowl meat enriched in PUFAs, especially n-3 FAs, thereby significantly improving the nutritional value.
Are insects the farm animal of the future? A key agenda for agricultural production systems is the development of sustainable practices whereby food and feed can be produced in an environmentally efficient manner. These goals require novel approaches to complex problems and demand collaboration between scientists, producers, consumers, government and the general population. The provision of feed for animals is a major contributor to land and water use and greenhouse gas (GHG) emissions. Further, overfishing and a reduction in available land and water resources on which crops can be grown has led to an increase in price of protein ingredients such as fish meals and oils and soybean meals. Determination of novel solutions to meet the feed protein requirements of production animals is key to the development of sustainable farming practices. The Australian pork industry aims to develop production systems that efficiently use available resources (such as feed and energy) and limit the production of emissions (such as manure waste and GHGs). Invertebrates (insects e.g. black soldier flies) are naturally consumed by monogastric and aquatic species, yet the large-scale production of insects for feed (or food) is yet to be exploited. Most insects are low producers of GHGs and have low land and water requirements. The large-scale production of insects can contribute to a circular economy whereby food and feed waste (and potentially manure) are reduced or ideally eliminated via bioconversion. While the concept of farm-scale production of insects as domestic animal feed has been explored for decades, significant production and replacement of traditional protein sources has yet to be achieved. This review will focus on the potential role of insect-derived protein as a feed source for the Australian pig production industry.
The use of compost bedded pack systems (CBS) has increased over the past 5 years in tropical countries, and studies associating production traits with economical outcomes of this system are warranted. Our objectives were to evaluate productive traits, economic outcomes and the risks of losses of dairy farms that switched from a drylot system (DLS) to a CBS and to compare these with similar farms that did not change their system. We collected data from 18 farms over 36 consecutive months (August 2014 to July 2017). All farms started the study as DLS, and six farms switched to CBS in the second year. The other 12 farms kept their DLS during the 36 months of evaluation. Annual technical and economic indexes per farm were collected and calculated. Additionally, a risk analysis was performed based on a 10-year historical series of milk prices. The results were analysed using a regression model including year and herd as categorical variables (fixed), system and herd size as quantitative variables (fixed), and system × herd as a random variable. Furthermore, a non-metric multidimensional scaling plot was used to evaluate producers’ profiles in each year. Milk fat, milk total solids, and somatic cell count did not change when farms switched from DLS to CBS, and averaged 3.80%, 12.04%, and 256 500 cells/ml, respectively. However, milk protein (%) decreased in CBS farms. The majority of milk production variables were not affected. Nevertheless, farms that switched to CBS increased milk production per cow by 13.3% compared with DLS farms. Total operation costs (296 076.83 $/year) were not affected by the system, and neither were the costs of concentrates, roughage, labour or medicines. Net margin per litre (0.09 $/l), operating profit (14.95%), assets per litre (398.68 $/l per day) and return on assets (10.27%) did not change when farms switched from DLS to CBS. Net margin ($/l and $/cow) and asset turnover rate increased in CBS farms. Risk analysis indicated that the risk was reduced by 38% in CBS farms. Furthermore, our analysis showed that producers who switched to CBS had similar technical and economic indexes in the first year before switching their system. In conclusion, this study demonstrates that CBS systems might be promising for producers in tropical countries who are looking for a more productive and less risky system. We did not observe improvements in animal health as previously reported in the literature.
The gut is composed of a single layer of intestinal epithelial cells and plays important roles in the digestion and absorption of nutrients, immune and barrier functions and amino acid metabolism. Weaning stress impairs piglet intestinal epithelium structural and functional integrities, which results in reduced feed intake, growth rates and increased morbidity and mortality. Several measures are needed to maintain swine gut development and growth performance after weaning stress. A large body of evidence indicates that, in weaning piglets, glutamine, a functional amino acid, may improve growth performance and intestinal morphology, reduce oxidative damage, stimulate enterocyte proliferation, modulate cell survival and death and enhance intestinal paracellular permeability. This review focuses on the effects of glutamine on intestinal health in piglets. The aim is to provide evidentiary support for using glutamine as a feed additive to alleviate weaning stress.
It has taken more than 40 years for the fields of immunology and neuroscience to capture the potential impact of the mechanistic understanding of how an active immune signalling brain might function. These developments have grown an appreciation for the immunocompetent cells of the central nervous system and their key role in the health and disease of the brain and spinal cord. Moreover, the understanding of the bidirectional communication between the brain and the peripheral immune system has evolved to capture an understanding of how mood can alter immune function and vice versa. These concepts are rapidly evolving the field of psychiatry and medicine as a whole. However, the advances in human medicine have not been capitalised upon yet in animal husbandry practice. Of specific attention are the implications that these biological systems have for creating and maintaining heightened pain states. This review will outline the key concepts of brain–immune communication and the immediate opportunities targeting this biology can have for husbandry practices, with a specific focus on pain.
Rheological properties of digesta play a role in digesta passage kinetics through the gastrointestinal tract, in turn affecting nutrient absorption kinetics. Therefore, we studied the effects of diet viscosity on digesta passage and physicochemical properties in pigs. Twenty male growing pigs (35 kg body weight at the start) were assigned to one of five diets with increasing dietary concentrations of β-glucans (BG; from 0 % to 10 %), in exchange for maize starch. After a 17-day adaptation period, pigs were euthanised and the mean retention time (MRT) of digesta solids (TiO2) and liquids (Cr-EDTA) in the stomach, and proximal and distal half of the small intestine was quantified. In the stomach, the MRT of liquids, but not of solids, increased when dietary BG level increased (6 min per % dietary BG, P = 0.008 and R2 = 0.35). Concomitantly, stomach DM content (5 g/kg per % dietary BG, P < 0.001 and R2 = 0.53) and apparent digesta viscosity (56 Pa × s at 1/s shear rate per % dietary BG, P = 0.003 and R2 = 0.41) decreased. In the proximal half of the small intestine, no effects of dietary BG level were observed. In the distal half of the small intestine, water-binding capacity (WBC) of digesta increased (0.11 g/g digesta DM per % dietary BG, P = 0.028 and R2 = 0.24) and starch digestibility decreased (0.3% per % dietary BG, P = 0.034 and R2 = 0.23) when dietary BG level increased. In the colon, apparent digesta viscosity at 45/s shear rate increased (0.1 Pa × s per % dietary BG, P = 0.03 and R2 = 0.24) in the proximal half of the colon, and digesta WBC increased (0.06 g/g digesta DM per % dietary BG, P = 0.024 and R2 = 0.26) in the distal half of the colon when dietary BG level increased. To conclude, increasing dietary BG level caused the MRT of liquids, but not that of solids, to increase in the stomach, resulting in reduced separation of the solid and liquid digesta fractions. This caused dilution of the stomach content and reduction in digesta viscosity when dietary BG levels increased. Effects of dietary BG level on physicochemical properties in the proximal small intestine were absent and may have been due to a low DM content. The WBC of digesta in the distal small intestine and colon increased when dietary BG level increased, as did apparent digesta viscosity in the proximal colon. This likely reflects the concentration of BG in digesta when moving through the gastrointestinal tract.