To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Adapting Barker’s ((2019). The Journal of Navigation, 72(3), 539–554) taxonomy of wayfinding behaviours – originally developed for man-made environments, paper and screen – we examined which behaviours are also found in the outdoors. In the analysis of the collected data from a questionnaire (n=401), we find that participants employ every category in Barker’s framework of social, semantic and spatial behaviours. Our respondents report the use of digital maps on a mobile phone as the most common behaviour, with following directional signs as the second most used. Furthermore, social wayfinding behaviours figure prominently and the participants express preferences for various information sources. We demonstrate similarities of behaviours across the different types of environments and we confirm the applicability of Barker’s taxonomy of wayfinding behaviours also in nature. Our study generates knowledge that potentially can make navigation simpler and more efficient through wayfinding design, and lead to heightened feeling of safety in the outdoors. Wayfinding behaviour studies, like this one, can serve as a bridge between human psychology and practical design.
The theory of causal fermion systems represents a novel approach to fundamental physics and is a promising candidate for a unified physical theory. This book offers a comprehensive overview of the theory, structured in four parts: the first lays the necessary mathematical and physical foundations; the second offers an introduction to the theory and the causal action principle; the third describes the mathematical tools for analyzing causal fermion systems; and the fourth gives an outlook on the key physical applications. With relevance across mathematical and theoretical physics, the book is aimed at graduate students and researchers interested in novel approaches to the structure of spacetime and alternative perspectives to the more established quantum field theories. It can be used for advanced courses in the subject or as a reference for research and self-guided study. Exercises are included at the end of each chapter to build and develop key concepts.
Let $X_H$ be the number of copies of a fixed graph H in G(n,p). In 2016, Gilmer and Kopparty conjectured that a local central limit theorem should hold for $X_H$ as long as H is connected, $p\gg n^{-1/m(H)}$ and $n^2(1-p)\gg 1$, where m(H) denotes the m-density of H. Recently, Sah and Sawhney showed that the Gilmer–Kopparty conjecture holds for constant p. In this paper, we show that the Gilmer–Kopparty conjecture holds for triangle counts in the sparse range. More precisely, if $p \in (4n^{-1/2}, 1/2)$, then
where $\sigma^2 = \mathbb{V}\text{ar}(X_{K_3})$, $X^{*}=(X_{K_3}-\mathbb{E}(X_{K_3}))/\sigma$ and $\mathcal{L}$ is the support of $X^*$. By combining our result with the results of Röllin–Ross and Gilmer–Kopparty, this establishes the Gilmer–Kopparty conjecture for triangle counts for $n^{-1}\ll p \lt c$, for any constant $c\in (0,1)$. Our quantitative result is enough to prove that the triangle counts converge to an associated normal distribution also in the $\ell_1$-distance. This is the first local central limit theorem for subgraph counts above the so-called $m_2$-density threshold.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
The intersection of statistical mechanics and mathematical analysis has proved a fertile ground for mathematical physics and probability, and in the decades since lattice gases were first proposed as a model for describing physical systems at the atomic level, our understanding of them has grown tremendously. A book that provides a comprehensive account of the methods used in the study of phase transitions for Ising models and classical and quantum Heisenberg models has been long overdue. This book, written by one of the masters of the subject, is just that.
Topics covered include correlation inequalities, Lee–Yang theorems, the Peierls method, the Hohenberg–Mermin–Wagner method, infrared bounds, random cluster methods, random current methods, and BKT transition. The final section outlines major open problems to inspire future work.
This is a must-have reference for researchers in mathematical physics and probability and serves as an entry point, albeit advanced, for students entering this active area.
We investigate the possibility of defining meaningful upper and lower quantization dimensions for a compactly supported Borel probability measure of order r, including negative values of r. To this end, we employ the concept of partition functions, which generalises the notion of the $L^q$-spectrum, thus extending the authors’ earlier work with Sanguo Zhu in a natural way. In particular, we derive inherent fractal-geometric bounds and easily verifiable necessary conditions for the existence of quantization dimensions. We state the exact asymptotics of the quantization error of negative order for absolutely continuous measures, thereby providing an affirmative answer to an open question regarding the geometric mean error posed by Graf and Luschgy in this journal in 2004.