To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Unifying topics that are scattered throughout the literature, this book offers a definitive review of mathematical aspects of quantization and quantum field theory. It presents both basic and advanced topics of quantum field theory in a mathematically consistent way, focusing on canonical commutation and anti-commutation relations. It begins with a discussion of the mathematical structures underlying free bosonic or fermionic fields: tensors, algebras, Fock spaces, and CCR and CAR representations. Applications of these topics to physical problems are discussed in later chapters. Although most of the book is devoted to free quantum fields, it also contains an exposition of two important aspects of interacting fields: diagrammatics and the Euclidean approach to constructive quantum field theory. With its in-depth coverage, this text is essential reading for graduate students and researchers in mathematics and physics. This title, first published in 2013, has been reissued as an Open Access publication on Cambridge Core.
Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the elementary particles that are the basic building blocks of nature. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and conceptual connections across these fields. This title, first published in 2015, has been reissued as an Open Access publication on Cambridge Core.
Kinks and domain walls are the simplest kind of solitons and are invaluable for testing various ideas and for learning about non-perturbative aspects of field theories. They are the subject of research in essentially every branch of physics, ranging from condensed matter to cosmology. This book, first published in 2006, is an introduction to kinks and domain walls and their principal classical and quantum properties. The book examines classical solitons, building from examples in elementary systems to more complicated settings. The formation of solitons in phase transitions, their dynamics and their cosmological consequences are further discussed. The volume concludes with an explicit description of a few laboratory systems containing solitons. This text will be of interest to both graduate students and academic researchers in theoretical physics, particle physics, cosmology and condensed matter physics. This book has been reissued as an Open Access publication on Cambridge Core.
Instantons, or pseudoparticles, are solutions to the equations of motion in classical field theories on a Euclidean spacetime. Instantons are found everywhere in quantum theories as they have many applications in quantum tunnelling. Diverse physical phenomena may be described through quantum tunnelling, for example: the Josephson effect, the decay of meta-stable nuclear states, band formation in tight binding models of crystalline solids, the structure of the gauge theory vacuum, confinement in 2+1 dimensions, and the decay of superheated or supercooled phases. Drawing inspiration from Sidney Coleman's Erice lectures, this volume provides an accessible, detailed introduction to instanton methods, with many applications, making it a valuable resource for graduate students in many areas of physics, from condensed matter, particle and nuclear physics, to string theory. This title, first published in 2017, has been reissued as an Open Access publication on Cambridge Core.
This book offers a systematic exposition of conformal methods and how they can be used to study the global properties of solutions to the equations of Einstein's theory of gravity. It shows that combining these ideas with differential geometry can elucidate the existence and stability of the basic solutions of the theory. Introducing the differential geometric, spinorial and PDE background required to gain a deep understanding of conformal methods, this text provides an accessible account of key results in mathematical relativity over the last thirty years, including the stability of de Sitter and Minkowski spacetimes. For graduate students and researchers, this self-contained account includes useful visual models to help the reader grasp abstract concepts and a list of further reading, making this an ideal reference companion on the topic. This title, first published in 2016, has been reissued as an Open Access publication on Cambridge Core.
Filling a gap in the current literature, this book is dedicated to high energy quantum chromodynamics (QCD) including parton saturation and the color glass condensate (CGC). It presents groundbreaking progress on the subject and describes many problems at the forefront of research, bringing postgraduate students, theorists and interested experimentalists up to date with research in this field. The material is presented in a pedagogical way, with numerous examples and exercises. Discussion ranges from the quasi-classical McLerran–Venugopalan model to the linear BFKL and nonlinear BK/JIMWLK small-x evolution equations. The authors adopt both a theoretical and an experimental outlook, and present the physics of strong interactions in a universal way, making it useful for physicists from across high energy and nuclear physics, and applicable to processes studied at high energy accelerators around the world. This title, first published in 2012, has been reissued as an Open Access publication on Cambridge Core.
The analysis of eigenvalues of Laplace and Schrödinger operators is an important and classical topic in mathematical physics with many applications. This book presents a thorough introduction to the area, suitable for masters and graduate students, and includes an ample amount of background material on the spectral theory of linear operators in Hilbert spaces and on Sobolev space theory. Of particular interest is a family of inequalities by Lieb and Thirring on eigenvalues of Schrödinger operators, which they used in their proof of stability of matter. The final part of this book is devoted to the active research on sharp constants in these inequalities and contains state-of-the-art results, serving as a reference for experts and as a starting point for further research.
Effective field theories are a widely used tool in various branches of physics. This book provides a comprehensive discussion of the foundations and fundamentals of effective field theories of quantum chromodynamics (QCD) in the light quark sector with an emphasis on the study of flavour symmetries and their realizations. In this context, different types of effective field theories pertaining to various energy scales are considered and selected applications are devised. It also covers the formulation of effective field theories in a finite volume and its application in the analysis of lattice QCD data. Effective Field Theories is intended for graduate students and researchers in particle physics, hadron physics and nuclear physics. Exercises are included to help the reader deepen their understanding of the topics discussed throughout, with solutions available to lecturers.
A weather routing tool is presented based on forecasted weather data along the route and considering safety aspects. The tool aims to determine the optimal path for the minimisation of the fuel oil consumption, ensuring a safe passage. It is developed in MATLAB and considers detailed ship characteristics. Specifically, ship's motions and fuel oil consumption of the main engine during a potential path are estimated. For the latter, a physics-based model for a specific vessel is developed where tools of different level of detail are utilised to calculate the various resistance components. A speed management strategy along the route is specified as well as safety criteria representing acceptable limits of ship's responses. When the set criteria and constraints have been set, a genetic algorithm is used to find the optimal route by means of ship's heading or by considering both heading and ship's power settings as variables to minimise the fuel oil consumption. The search space of the algorithm lies within a predefined envelop, but still the evolutionary optimisation approach used has no pre-assigned values to any possible candidate waypoint.
In 1915 while the Imperial Trans-Antarctic Expedition's vessel Endurance was icebound in the Weddell Sea, lunar occultation timings were carried out in order to rate the chronometers and thereby find longitude. The original observations have been re-analysed using modern lunar ephemerides and catalogues of star positions. The times derived in this way are found to differ by an average of 20 s from those obtained during the expedition using positions given from the Nautical Almanac and introduces an additional offset of the true positions to the east of those recorded in the log.
The three research topics, ship collision risk assessment, ship traffic hotspot detection and prediction, and collision-avoidance based ship path planning, are vital for next-generation vessel traffic management and monitoring systems. The system development is closely related to big data analytics and artificial intelligence for restricted waters. This study, therefore, aims to analyse the state-of-the art of these three topics over the latest decade, identify research gaps, and shed light on future research avenues. To achieve these three objectives, we critically and systematically review related articles that were published during the period between 2011 and 2021. We believe that this comprehensive and critical literature review would have a significant and profound impact on the formal safety assessment and vessel traffic management, and monitoring studies because it is not only an extension but also an essential continuity work of the literature review on maritime waterway risk assessment and prediction, as well as ship path guidance for ship collision risk mitigation in accordance with current automation vessels development and modern intelligent port construction.
Despite the crucial role played by nautical cartography during the 16th-century Iberian Expansion, surviving examples of charts used at sea are extremely rare, leaving gaps in our knowledge of how they were used in practice during this pivotal period. The present paper sheds light on this matter by introducing one of earliest extant Portuguese charts presenting positional fixes, which have so far gone unnoticed by researchers: the anonymous chart of about 1524 kept at the James Ford Bell Library. It is demonstrated that a second chart, kept at the Harry Ransom Center, was made by the same author from the same pattern. The production context of the charts is evidenced through a description of the manuscript copying technique most likely employed, and the rules governing chart manufacture in 16th-century Portugal. Exceptional aspects of the charts’ placenames are discussed, and a possible source for their geographical design is identified.
The understanding and interpretation of simplicty in the context of a navigational path can be ambiguous. Different approaches to path planning are briefly juxtaposed, focusing on their simplicity-based distinctive features. This takes into consideration the response to drift caused by air or water currents and the geometric background. Special attention is paid to the straight-line-based solutions which are preferred by the human convenience and perception, recalling some well-known applications in navigation and including their (dis)advantages. In particular, this refers to the Euclidean simplicity applied at the cost of effectiveness in the standard search and rescue (SAR) patterns in the presence of relatively stronger position-dependent currents.
Effective communication among seafarers is an important part of ship resource management. The improvement of effective internal communication among seafarers has an important impact on the improvement of work performance. This paper conducts an empirical study to determine which factors are related to the impact of seafarers’ communication on work performance. A questionnaire was designed to investigate 339 seafarers from different companies, different ship types and different ranks. The hypotheses were tested and analysed by five-point Likert scale, hierarchical regression analysis and path analysis. The findings of the study show that communication frequency and communication quality have a significant positive effect on performance. The effect of communication quality on performance is greater than the effect of communication frequency on performance. Two dimensions of team diversity – knowledge and skill diversity – have a significant positive impact on communication quality. Based on the questionnaire and relevant analysis, this paper puts forward some suggestions to improve the seafarer's work performance from the perspective of communication.
There is an undeniable recognition that maritime cybersecurity risk management should involve process, technology, and people. However, thus far, most studies have focused on the technical and process aspects of maritime cybersecurity, more than on the human element. On a vessel, the Electronic Chart Display and Information System (ECDIS) is, amongst all the electronic devices on the bridge, a complex and indispensable maritime sociotechnical system that must consider both technical and human aspects. In the context of maritime cyber resilience, it is important to note that when developing strategies for maritime cybersecurity, one cannot only consider technical security measures and ignore human error, as this does not adhere to good cybersecurity practice. To address this, this study aims to identify the navigating officers’ responsibilities for ECDIS cybersecurity and find the human error probabilities during these tasks via the SLIM-based human reliability analysis method. The outputs of this study provide an insight for industrial policies and best practices, in ECDIS cybersecurity risk management in terms of the behavioural and cultural aspects of shipping.
Inland waterway transportation is one of the most important means to transport cargo in rivers and canals. To facilitate autonomous navigation for ships in inland waterways, this paper proposes a data-driven approach for predictions and control of underactuated ships with unknown dynamics, which integrates model predictive control (MPC) with an iterative learning control (ILC) scheme. In each iteration, kernel-based linear regressors are used to identify the relations between the evolution of ship states and control inputs based on the stored data from previous iterations and the collected data during operation, so as to build the system prediction model. The data are dynamically used to fix the prediction model over iterations, as well as to improve the controller performance until it converges. The proposed approach does not require prior knowledge regarding the hydrodynamic coefficients and ship parameters, but learns from the data instead. In addition, it exploits the advantages of MPC in handling constraints with minimised overall cost. Simulation results show that the controller could start from a nominal, linear data-driven ship model and then learn to reduce the path-following errors based on the data obtained over iterations.