To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fully updated and expanded, this new edition presents a cutting-edge summary of planetary rings, including results from Cassini's Saturn System, Equinox and Solstice missions, and the New Horizons flyby of Jupiter. The book introduces basic physical processes and simple mathematical approaches in an accessible manner, including N-body and stochastic models of ring dynamics. Further revised chapters present highlighted topics including Saturn's F ring, Uranus' rings and moons, Neptune's partial rings, dusty rings, and Jupiter's ring-moon system after Galileo and New Horizons. Cassini results are fully integrated throughout, including new images in color, and a new Afterword links ring images in the Cassini 'Hall of Fame' gallery to the relevant explanation in the text. An online cache of images and videos from NASA's collection makes it easy to locate relevant and beautiful illustrative materials. This is a key resource for students, researchers and professionals in planetary science, astronomy and space-mission research.
Titan's atmosphere harbors a suite of hydrocarbons and nitrogen-bearing compounds formed from the dissociation of the two main species, nitrogen (N2)and methane (CH4). It also contains oxygen compounds, likely produced from an influx of water and/or oxygen. The mixing ratios of these photochemical species vary with altitude, latitude, and time as a consequence of various chemical sources and sinks and of the atmospheric transport that redistributes them both vertically and horizontally. It is important to characterize and monitor the distribution of these chemical species because they play an important role in the radiative budget and provide insight into the seasonally varying atmospheric circulation. They can also help us understand the complex chemistry at work in Titan's atmosphere, leading to the formation of thick haze layers, which in turn affect the heat balance and general circulation. This chapter reviews the neutral composition of Titan's atmosphere, from the troposphere up to the thermosphere (~ 1400 km), and its vertical, horizontal, and temporal variations. These topics are interwoven with the origin and evolution, the general circulation, the clouds and weather, and the atmospheric chemistry of Titan that are the subjects of Chapters 1, 4, 6, and 7.
5.1.1 Historical perspective
The first unquestionable evidence for an atmosphere on Titan was the discovery of several absorption bands of methane in near-infrared spectra of the satellite (Kuiper, 1944). But it was not until the 1970s that Titan became an object of intense study.