To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This fully updated, self-contained textbook covering modern optical microscopy equips students with a solid understanding of the theory underlying a range of advanced techniques. Two new chapters cover pump-probe techniques, and imaging in scattering media, and additional material throughout covers light-sheet microscopy, image scanning microscopy, and much more. An array of practical techniques are discussed, from classical phase contrast and confocal microscopy, to holographic, structured illumination, multi-photon, and coherent Raman microscopy, and optical coherence tomography. Fundamental topics are also covered, including Fourier optics, partial coherence, 3D imaging theory, statistical optics, and the physics of scattering and fluorescence. With a wealth of end-of-chapter problems, and a solutions manual for instructors available online, this is an invaluable book for electrical engineering, biomedical engineering, and physics students taking graduate courses on optical microscopy, as well as advanced undergraduates, professionals, and researchers looking for an accessible introduction to the field.
Understand the fundamental concepts, theoretical background, major experimental observations, and device applications of graphene photonics with this self-contained text. Systematically and rigorously developing each concept and theoretical model from the ground up, it guides readers through the major topics, from basic properties and band structure to electronic, optical, optoelectronic, and nonlinear optical properties, and plasmonics and photonic devices. The connections between theory, modeling, experiment, and device concepts are demonstrated throughout, and every optical process is analyzed through formal electromagnetic analysis. Suitable for both self-study and a one-semester or one-quarter course, this is the ideal text for graduate students and researchers in photonics, optoelectronics, nanoscience and nanotechnology, and optical and solid-state physics, who are working in this rapidly developing field.
While transmission and scattering matrices have been a convenient way to describe wave propagation in complex media in mesoscopic physics, being able to describe important quantities such as total transmission, intensity statistics, etc. it has mainly been studied in this domain from a statistical point of view, i.e. to extract average quantities. Extracting the exact matrix of a given system was never even considered.
In this chapter, we will describe how, leveraging on spatial light modulator technologies and the new possibilities offered by digital holography, it is possible to experimentally measure this quantity in the optical domain, not in a statistical sense, but for a particular realization of disorder, i.e. a given system, which will be for most of the experiments described in this chapter an ideal multiply scattering medium, essentially a layer of white paint, but could in principle be biological tissues. Once this information is known, the problem of recovering an image is not bound to be carried using ballistic photons. Indeed, even in the diffusive regime, the result of the propagation of a field can be deterministically predicted for scattered light. In particular, the optimal wavefront that will generate a focus on one or several output modes can be easily extracted from the matrix. We will discuss the various initial implementations of this concept, and its applications for focusing and imaging. Recent developments have shown different ways of either simplifying the procedure, or expanding its capabilities to new domains, for instance the spectral domain.
In this chapter, I will first introduce the concept of feedback-based wavefront shaping and some of the fundamental properties of this technique. Then, I will review the different algorithms that can be used for finding the wavefront, and discuss different options for obtaining a feedback signal in the first place. After that, I touch on some of the wave correlations that play a role in wavefront shaping, and briefly link to related research fields. This chapter is concluded with an outlook of future applications.
This chapter introduces the reflection matrix approaches developed in wave physics for target detection and imaging inside scattering media. This configuration provides a non-invasive study of the medium and is based on the measurement of impulse responses between an array of sources and an array of receivers. In this review, we present the specificities of this approach in acoustics and optics where it is used for biomedical applications.