To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This review of Aboriginal astronomy and navigation brings together accounts from widely dispersed places in Western Australia, from Noongar Country in the south-west, through to the Eastern Goldfields, the Pilbara, the Kimberley and the Central Deserts. Information for this review has been taken from the literature and non-conventional sources, including artist statements of paintings. The intention for the review is that the scope is traditional, pre-European settlement understandings, but post-settlement records of oral accounts, and later articulation by Aboriginal peoples, are necessarily relied upon. In large part, the Western Australian accounts reflect understandings reported for other states. For example, star maps were used for teaching routes on the ground, but available accounts do not evidence that star maps were used in real-time navigation. The narratives or dreamings that differ most from those of other states explain creation of night-sky objects and landforms on Earth, events including thunder, or they address social behaviour.
Magnetic fields permeate space and affect many major astrophysical phenomena, but they are often ignored due to their perceived complexity. This self-contained introduction to astrophysical magnetic fields provides both a comprehensive review of the current state of the subject and a critical discussion of the latest research. It presents our knowledge of magnetic fields from the Early Universe, their evolution in cosmic time through to their roles in present-day galaxies, galaxy clusters and the wider intergalactic medium, with attention given to both theory and observations. This volume also contains an extensive introduction into magnetohydrodynamics, numerous worked examples, observational and mathematical techniques and interpretations of the observations. Its review of our current knowledge, with an emphasis on results that are likely to form the basis for future progress, benefits a broad audience of advanced students and active researchers, including those from fields such as cosmology and general relativity.
We present a software package for single-dish data processing of spacecraft signals observed with VLBI-equipped radio telescopes. The Spacecraft Doppler tracking (SDtracker) software allows one to obtain topocentric frequency detections with a sub-Hz precision and reconstructed and residual phases of the carrier signal of any spacecraft or landing vehicle at any location in the Solar System. These data products are estimated using the ground-based telescope’s highly stable oscillator as a reference, without requiring an a priori model of the spacecraft dynamics nor the downlink transmission carrier frequency. The software has been extensively validated in multiple observing campaigns of various deep space missions and is compatible with the raw sample data acquired by any standard VLBI radio telescope worldwide. In this paper, we report the numerical methodology of SDtracker, the technical operations for deployment and usage, and a summary of use cases and scientific results produced since its initial release.
Mid- and far-infrared (IR) photometric and spectroscopic observations are fundamental to a full understanding of the dust-obscured Universe and the evolution of both star formation and black hole accretion in galaxies. In this work, using the specifications of the SPace Infrared telescope for Cosmology and Astrophysics (SPICA) as a baseline, we investigate the capability to study the dust-obscured Universe of mid- and far-IR photometry at 34 and $70\, {\rm{\mu }}\mathrm{m}$ and low-resolution spectroscopy at $17{-}36\, {\rm{\mu }}\mathrm{m}$ using the state-of-the-art Spectro-Photometric Realisations of Infrared-selected Targets at all-z (Spritz) simulation. This investigation is also compared to the expected performance of the Origins Space Telescope and the Galaxy Evolution Probe. The photometric view of the Universe of a SPICA-like mission could cover not only bright objects (e.g. $L_{IR}>10^{12}\,{\rm L}_{\odot}$) up to ${z}=10$, but also normal galaxies ($L_{IR}<10^{11}\,{\rm L}_{\odot}$) up to $\textit{z}\sim4$. At the same time, the spectroscopic observations of such mission could also allow us to estimate the redshifts and study the physical properties for thousands of star-forming galaxies and active galactic nuclei by observing the polycyclic aromatic hydrocarbons and a large set of IR nebular emission lines. In this way, a cold, 2.5-m size space telescope with spectro-photometric capability analogous to SPICA, could provide us with a complete three-dimensional (i.e. images and integrated spectra) view of the dust-obscured Universe and the physics governing galaxy evolution up to $\textit{z}\sim4$.
To use spectral lines for stellar analysis, we need to have some basic understanding of how and why they respond to variations in chemical abundances, temperature, and pressure.Here in Chapter 13 these issues are explored and we learn how to select spectral lines suitable for specific tasks.
In this chapter we bring together some of the techniques of observing and calculating stellar spectra with the aim of measuring the sizes and temperatures of stars.Results are summarized.
Surface gravity is one of the basic parameters of a star.The tools we have to measure a star's gravity are reviewed and examples of their application aregiven.A summary of gravity values is given.
Rotation of stars affects stellar spectra and stellar physics.Spectral lines are broadened and imprinted with the characteristic shape of the rotational velocity distribution, and there may be modulation from spots being carried across the visible hemisphere.Methods for extracting rotation rates from line profiles are discussed in detail.Results are summarized.Rotation circulates material inside stars, mixing chemicals and transporting angular momentum.And rotation couples with convection to generate magnetic fields.The magnetic fields produce many types of activity, including spots and flares and energy for coronae, and they hold on to escaping mass, acting as a magnetic brake on the rotation.We look into how rotation changes with time, with evolutionary stage, and for binaries with tidal interaction.
The black body plays a central role in stellar atmospheres in describing the radiation field within the photosphere.The equation describing the photon distribution is Planck's law.Because the characteristics of black-body radiation are completely determined by the temperature of the black body, it forms a fundamental radiation standard, used to calibrate absolute radiant energy received from stars.