To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The core of the cluster R136 in the Large Magellanic Cloud hosts the most massive stars known. The high mass-loss rates of these stars strongly impact their surroundings, as well as the evolution of the stars themselves. To quantify this impact accurate mass-loss rates are needed, however, uncertainty about the degree of inhomogeneity of the winds (‘wind clumping’), makes mass-loss measurements uncertain. We combine optical and ultraviolet HST/STIS spectroscopy of 56 stars in the core of R136 in order to put constraints on the wind structure, improving the accuracy of the mass-loss rate measurements. We find that the winds are highly clumped, and use our measured mass-loss rates to test theoretical predictions. Furthermore we find, for the first time, tentative trends in the wind-structure parameters as a function of mass-loss rate, suggesting that the winds of stars with higher mass-loss rates are less clumped than those with lower mass-loss rates.
In this poster, using the POSYDON code, we present results on binary progenitors of stripped-envelope SNe and their companions. We find that most progenitors are expected to explode, according to typical SN prescriptions (in contrast to single star progenitors). We also show the expected masses and position in the HR diagram of the companions of these SNe at the moment of explosion, allowing us to do a first statistical comparison with the compiled sample of observational detections (or upper limits) on these companions.
Luminous blue variables (LBVs) and B[e] supergiants (B[e]SGs) are some of the most massive stars that display extreme and puzzling behavior. Their rarity indicates that they belong to short evolutionary phases or short-lived phenomena in the post-main sequence evolution of massive stars. However, their strong mass loss and episodic mass eruptions may be crucially impacting massive star evolution. LBVs are a group of evolved massive stars that exhibit irregular variability and eruptive mass loss. Various subtypes, including S Doradus variables, giant eruptions, and pre-supernova outbursts, exist. The physical cause of the LBV phenomenon remains heavily debated. B[e]SGs have strong forbidden line emission and infrared excess from dust that are thought to arise in a circumstellar disk or torus. The formation mechanism of their disk-like structures is yet to be settled. The evolutionary phases of LBVs and B[e]SGs and their connection to other evolved massive stars are important unanswered questions in massive star evolution.
Mass-loss is a key parameter throughout the evolution of massive stars. In this work we probe the radial clumping stratification of OB stars in the intermediate and outer wind regions (r ≳ 2R*; r, radial distance to photosphere), derive upper limits for mass-loss rates, Ṁmax, and compare them to current theoretical mass-loss recipes implemented in evolutionary models. A key conclusion of our analysis regards the derived upper-limit mass-loss rates of B supergiants, independently of clumping, which calls for an urgent revision of the role recombination of iron-like elements plays in determining the mass-loss rates of objects that cross the bi-stability region, and a careful analysis of corresponding effects for stellar evolution models.
We present a detailed spectroscopic analysis of the only known eclipsing high mass X-ray binary with a black hole companion, M33 X-7. We obtained the first UV spectra of the system accompanied by X-ray observations, taken at three key orbital phases. We performed a detailed analysis of X-Ray, UV, and archival optical spectra using stellar atmosphere models which shed light on the interaction of the stellar wind with the black hole. Our new analysis suggests a large reduction in component masses compared to previous results. Our one-dimensional calculations confirm that the photoionization by the X-ray radiation can significantly change the ionization structure and diminish the wind accelerations. For this system standard wind-fed accretion scenario alone cannot explain the observed X-ray luminosity, indicating an additional mass overflow towards the black hole. Our evolutionary models suggest that the system is transitioning towards a common envelope stage in which both components merge.
The first magnetic field in a star other than the Sun was detected in 1947 in the star 78 Vir. Today, we know that about 10% of these intermediate-mass and high-mass stars have strong, large-scale surface magnetic fields whose origin has remained a mystery till today. It has been suggested that merging of main-sequence and pre-main-sequence stars could produce such strong fields. The massive star τ Sco is a well-known member of the group of magnetic stars and is a blue straggler given its apparently young age compared to that of other members of the Upper Scorpius association. Here, we present 3D magnetohydrodynamic simulations of the coalescence of two massive main-sequence stars and 1D stellar evolution computations of the subsequent evolution of the merger product that can explain τ Sco’s magnetic field, apparent youth and other observed characteristics. We argue that field amplification in stellar mergers is a general mechanism to form strongly-magnetised massive stars. Such stars are promising progenitors of magnetars, which may give rise to some of the enigmatic fast radio bursts, and their supernova explosions may be affected by the strong magnetic fields.
The VLT/FLAMES Tarantula Survey (Evans et al. 2011) identified a group of slowly-rotating nitrogen-rich O-type stars that cannot be explained by current evolutionary models. Here we present high-quality VLT/UVES observations of four of these stars that allow a detailed quantitative spectroscopic analysis. We present the analysis of the spectra with a genetic algorithm, and discuss the future steps to be taken to further investigate the cause of the nitrogen enrichment.
Line-driven stellar winds are ubiquitous among hot massive stars. In some cases they can become so strong, that the whole star is cloaked by an optically thick wind. The strong outflow gives rise to large emission lines, defining the class of so-called Wolf-Rayet (WR) stars. While being major players in the evolution of massive stars, the formation of heavy black holes, and the distribution of elements, the occurrence and nature of WR winds is still quite enigmatic.
A promising instrument towards a better theoretical understanding are stellar atmospheres allowing for a consistent inclusion of the hydrodynamics. By coupling stellar and wind parameters and the inclusion of a detailed non-LTE radiative transfer, they allow us to go beneath the observable layers and study the onset of WR-type winds. Establishing larger sets of models, we were able to make ground-breaking progress by identifying trends with mass and metallicity that deviate significantly from present empirical descriptions. Our modelling efforts reveal a complex picture for WR-type winds with strong, non-linear dependencies. Besides covering metallicity and mass, we further identify surface hydrogen as an important ingredient to retain WR-type mass loss at lower metallicity. Here, we present a summary of recent insights on the nature and onset of WR-type winds in massive stars including the consequences for stellar evolution, remaining open questions, and current efforts to overcome them.
Supernova properties in radio strongly depend on their circumstellar environment and they are an important probe to investigate the mass loss of supernova progenitors. Recently, core-collapse supernova observations in radio have been assembled and the rise time and peak luminosity distribution of core-collapse supernovae in radio has been obtained. In this talk, we will discuss the constraints on the mass-loss prescriptions of red supergiants obtained from the assembled radio properties of Type II supernovae. We take a couple of mass-loss prescriptions for red supergiants, calculate the rise time and peak luminosity distribution based on them, and compare the results with the observed distribution. We found that the widely spread radio rise time and peak luminosity distribution of Type II supernovae can only be explained by mass-loss prescriptions having strong dependence on the luminosity. Red supergiant mass-loss prescriptions should have steep luminosity dependence in the supernova progenitor range.
Massive stars emit X-rays. Despite modest X-ray luminosities of single hot massive stars, the ongoing large observing campaigns combining X-ray and UV spectroscopy provide a tomographic view of stellar winds. It is now established that X-ray radiation is modulated with stellar rotation and shows the same period as discrete absorption components (DACs) in the UV resonance lines. The latter are associated with corotating interaction regions (CIRs) in stellar winds, therefore the mechanisms responsible for generation of X-rays and CIRs appear to be physically linked. Binary massive stars with accreting compact companions – high-mass X-ray binaries (HMXBs) – are routinely observed by modern X-ray observatories at Mpc distances. Joint observations in X-ray and UV allow to determine realistic properties of these systems. The brightest sources among HMXBs are ultraluminous X-ray sources (ULXs). Their powerful radiation is an important source of stellar feedback. HMXBs are the products of massive binary evolution and are typically found in the vicinity of young massive star clusters. The superstar clusters blow hot superbubbles which fill large areas in star-forming dwarf galaxies. Recent models show that X-ray emission from superbubbles is likely the dominant source of He ii ionization in metal-poor star-forming dwarf galaxies. To conclude, X-ray observations provide an important window for studying massive stars and their feedback near and far.
Massive stars are the objects that condition the evolution of the interstellar medium by the amount of energy released during their lives and especially by their death as a supernova explosion. All the data provided by the previous and ongoing missions of ground and space telescopes have saturated us with the amount of information, which is no longer easy to process daily by human routines. To this end, we present the development of a massive star spectroscopic interactive database designed for scientific research.
We study the He II λ4686 emission south of multiple-star system HD 5980, which hosts two WN-type stars. We use optical VLT FORS1 long-slit spectra. The observations are close to the eclipse phase. Broad He II emission with a SNR >5 is observed as far as 7.6 pc from HD 5980. The He II emission that is closest to HD 5980 is 1.2 pc directly south and has a redshifted component with FWHM 1450 km s-1 originating in the eclipsing WN5-6 star, and a blueshifted component with FWHM 600 km s-1. The second component cannot be explained by either the nearly- eclipsed WN star or the nearby supernova remnant, SNR B0057-724. We suggest that the additional He II emission comes from the colliding winds of the two WN stars.
Rest-frame far-ultraviolet spectra are fundamental to our understanding of star-forming galaxies, providing a unique window on massive star populations (MSs), chemical evolution, feedback processes, and reionization. JWST is ushering in a new era, pushing the FUV frontier beyond z=10. The success of such endeavors hinges on a comprehensive understanding of the MSs and gas conditions that power the observed spectra. The COS Legacy Archive Spectroscopic SurveY (CLASSY) is a powerful and promising solution providing high-quality, high-resolution FUV spectra of 45 nearby star-forming galaxies. The spectra contain a suite of features that simultaneously characterize the MSs that populate metal-poor galaxies, physical properties of large-scale outflows, and chemical abundance patterns. The CLASSY sample is consistent with the z 0 mass-metallicity relationship and spans 1.5 dex in metallicity. These unique properties make CLASSY the benchmark training set for studies of MSs in star-forming galaxies both across cosmic time and connecting metal-poor to metal-rich populations.
The ESA/KU Leuven CubeSpec mission is specifically designed to provide low-cost space-based high-resolution optical spectroscopy. Here we highlight the science requirements and capabilities of CubeSpec. The primary science goal is to perform pulsation mode identification from spectroscopic line profile variability and empower asteroseismology of massive stars.
NGC3603 is one of the youngest massive clusters of the Milky Way which uniquely enables studying the interplay between massive star feedback and the surrounding interstellar medium. Yet, a deep infrared (IR) view of the cluster is missing. We present guaranteed time observations of NGC3603 consisting of near infrared spectroscopy taken with VLT-KMOS. This data set will provide a first, rather complete IR census.
Some Be stars were found to emit very bright and extremely hard thermal X-rays. This so-called γ Cas -star category is rapidly growing, showing that the phenomenon is far from being uncommon and its consequences on Be population feedback should be examined. The origin of this X-ray peculiarity is however much debated. In this contribution, we review the most recent observational clues and derive constraints on the cause of the phenomenon: properties of these stars (multiplicity status, photometric variability), X-ray reaction to disk changes, impact of stripped-star companions on the X-ray emission,…
Current models of stellar evolution predict that stars more massive than ∼6 M⊙ should have completely depleted all lithium (Li) in their atmospheres by the time when they reach the He core burning phase. Against this, a non-negligible number of red giants with masses ≳6 M⊙ presenting strong Li lines have recently been reported. Motivated by this finding, we have carried out a spectroscopic survey of red supergiants (RSGs) in the Perseus Arm and a selection of young open clusters in the Magellanic Clouds to assess the presence of the Li <sc>i</sc> 6708Å doublet line. Based on a sample of> 70 objects, close to one third of RSGs in the Perseus Arm display noticeable Li lines, with perhaps a trend towards a lower fraction among more luminous stars. The samples in the Magellanic Clouds are not as large, but hint at a metallicity dependence. Twenty one RSGs in 5 LMC clusters show a very high fraction of Li detection, around 40%. Conversely, 17 RSGs in 5 SMC clusters give only one secure detection. The interpretation of these observational results is not straightforward, but a mechanism for Li production seems most likely. Further characterisation work is ongoing, while theoretical studies into this matter are urgently needed.
The emission line spectra of WR stars are often formed completely in the optically thick stellar wind. Hence, any assumption on the wind velocity law in a spectral analysis has a profound impact on the determination of the stellar parameters. By comparing Potsdam Wolf-Rayet (PoWR) model spectra calculated with different β laws, we show that the velocity field heavily influences the spectra: by using the appropriate β laws, the entire range of late and early types can be covered with the same stellar model.
We present results from 3D MHD simulations of the magnetospheres from massive stars with a dipole magnetic axis that has an arbitrary obliquity angle (β) to the stars rotation axis. As an initial direct application, we examine the global structure of co-rotating disks for tilt angles β=0, 45 and 90 degrees using ζ Pup stellar parameters as a prototype. We find that for models with rapid stellar rotation (∼ 0.5 critical rotation), accumulation surfaces closely resemble the form predicted by the analytic Rigidly Rotating Magnetosphere (RRM) model, but with a mass distribution and outer disk termination set by centrifugal breakout processes. However, some significant differences are found including warping resulting from the dynamic nature of the MHD models in contrast to static RRM models. These MHD models can be used to synthesize rotational modulation of photometric absorption and H-alpha emission for a direct comparison with observations.