We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The well-known Cameron–Martin formula allows us to calculate the mathematical expectation where Ws is a Wiener process. This paper extends this result to the case of piecewise continuous martingales. As a particular case the mathematical expectations of a functional of generalized Ornstein– Uhlenbeck processes and pure jump processes are calculated.
A direct derivation is given of a formula for the normalized asymptotic variance parameters of the boundary local times of reflected Brownian motion (with drift) on a compact interval. This formula was previously obtained by Berger and Whitt using an M/M/1/C queue approximation to the reflected Brownian motion. The bivariate Laplace transform of the hitting time of a level and the boundary local time up to that hitting time, for a one-dimensional reflected Brownian motion with drift, is obtained as part of the derivation.
Simple necessary and sufficient conditions for a function to be concave in terms of its shifted Laplace transform are given. As an application of this result, we show that the expected local time at zero of a reflected Lévy process with no negative jumps, starting from the origin, is a concave function of the time variable. A special case is the expected cumulative idle time in an M/G/1 queue. An immediate corollary is the concavity of the expected value of the reflected Lévy process itself. A special case is the virtual waiting time in an M/G/1 queue.
The Itô formula is the fundamental theorem of stochastic calculus. This short note presents a new proof of Itô's formula for the case of continuous semimartingales. The new proof is more geometric than previous approaches, and has the particular advantage of generalizing immediately to the multivariate case without extra notational complexity.
Let X0, X1…Xn,… be a stationary Gaussian process. We give sufficient conditions for the expected number of real zeros of the polynomial Qn (z) = Σnj =o X jzj to be (2/ π)log n as n tends to infinity.
In this paper we prove several random fixed point theorems for multifunctions with a stochastic domain. Then those techniques are used to establish the existence of solutions for random differential inclusions. A useful tool in this process is a stochastic version of the Tietze extension theorems that we prove. Finally we present a stochastic version of the Riesz representation theorem for Hilbert spaces.
We study the equation dY(t)/dt = f(Y(t), Eh(Y(t))) for random initial conditions, where E denotes the expected value. It turns out that in contrast to the deterministic case local Lipschitz continuity of f and h are not sufficient to ensure uniqueness of the solutions. Finally we also state some sufficient conditions for uniqueness.