To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the derived Hall algebra of the partially wrapped Fukaya category of a surface. We give an explicit description of the Hall algebra for the disk with $m$ marked intervals and we give a conjectural description of the Hall algebras of all surfaces with enough marked intervals. Then we use a functoriality result to show that a graded version of the HOMFLY-PT skein relation holds among certain arcs in the Hall algebras of general surfaces.
Let $G$ be a semisimple complex algebraic group with Lie algebra $\mathfrak{g}$. For a nilpotent $G$-orbit ${\mathcal{O}}\subset \mathfrak{g}$, let $d_{{\mathcal{O}}}$ denote the maximal dimension of a subspace $V\subset \mathfrak{g}$ that is contained in the closure of ${\mathcal{O}}$. In this note, we prove that $d_{{\mathcal{O}}}\leq {\textstyle \frac{1}{2}}\dim {\mathcal{O}}$ and this upper bound is attained if and only if ${\mathcal{O}}$ is a Richardson orbit. Furthermore, if $V$ is $B$-stable and $\dim V={\textstyle \frac{1}{2}}\dim {\mathcal{O}}$, then $V$ is the nilradical of a polarisation of ${\mathcal{O}}$. Every nilpotent orbit closure has a distinguished $B$-stable subspace constructed via an $\mathfrak{sl}_{2}$-triple, which is called the Dynkin ideal. We then characterise the nilpotent orbits ${\mathcal{O}}$ such that the Dynkin ideal (1) has the minimal dimension among all $B$-stable subspaces $\mathfrak{c}$ such that $\mathfrak{c}\cap {\mathcal{O}}$ is dense in $\mathfrak{c}$, or (2) is the only $B$-stable subspace $\mathfrak{c}$ such that $\mathfrak{c}\cap {\mathcal{O}}$ is dense in $\mathfrak{c}$.
We prove a conjecture of Rouquier relating the decomposition numbers in category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra to Uglov’s canonical basis of a higher level Fock space. Independent proofs of this conjecture have also recently been given by Rouquier, Shan, Varagnolo and Vasserot and by Losev, using different methods. Our approach is to develop two diagrammatic models for this category ${\mathcal{O}}$; while inspired by geometry, these are purely diagrammatic algebras, which we believe are of some intrinsic interest. In particular, we can quite explicitly describe the representations of the Hecke algebra that are hit by projectives under the $\mathsf{KZ}$-functor from the Cherednik category ${\mathcal{O}}$ in this case, with an explicit basis. This algebra has a number of beautiful structures including categorifications of many aspects of Fock space. It can be understood quite explicitly using a homogeneous cellular basis which generalizes such a basis given by Hu and Mathas for cyclotomic KLR algebras. Thus, we can transfer results proven in this diagrammatic formalism to category ${\mathcal{O}}$ for a cyclotomic rational Cherednik algebra, including the connection of decomposition numbers to canonical bases mentioned above, and an action of the affine braid group by derived equivalences between different blocks.
We prove that the probability substitution matrices obtained from a continuous-time Markov chain form a multiplicatively closed set if and only if the rate matrices associated with the chain form a linear space spanning a Lie algebra. The key original contribution we make is to overcome an obstruction, due to the presence of inequalities that are unavoidable in the probabilistic application, which prevents free manipulation of terms in the Baker–Campbell–Haursdorff formula.
Let $\Bbbk$ be a field of characteristic zero. For any positive integer $n$ and any scalar $a\in \Bbbk$, we construct a family of Artin–Schelter regular algebras $R(n,a)$, which are quantizations of Poisson structures on $\Bbbk [x_{0},\ldots ,x_{n}]$. This generalizes an example given by Pym when $n=3$. For a particular choice of the parameter $a$ we obtain new examples of Calabi–Yau algebras when $n\geqslant 4$. We also study the ring theoretic properties of the algebras $R(n,a)$. We show that the point modules of $R(n,a)$ are parameterized by a bouquet of rational normal curves in $\mathbb{P}^{n}$, and that the prime spectrum of $R(n,a)$ is homeomorphic to the Poisson spectrum of its semiclassical limit. Moreover, we explicitly describe $\operatorname{Spec}R(n,a)$ as a union of commutative strata.
The maximal finite abelian subgroups, up to conjugation, of the simple algebraic group of type E8 over an algebraically closed field of characteristic 0 are computed. This is equivalent to the determination of the fine gradings on the simple Lie algebra of type E8 with trivial neutral homogeneous component. The Brauer invariant of the irreducible modules for graded semisimple Lie algebras plays a key role.
We study the interplay between the minimal representations of the orthogonal Lie algebra $\mathfrak{g}=\mathfrak{so}(n+2,\mathbb{C})$ and the algebra of symmetries$\mathscr{S}(\Box ^{r})$ of powers of the Laplacian $\Box$ on $\mathbb{C}^{n}$. The connection is made through the construction of a highest-weight representation of $\mathfrak{g}$ via the ring of differential operators ${\mathcal{D}}(X)$ on the singular scheme $X=(\mathtt{F}^{r}=0)\subset \mathbb{C}^{n}$, for $\mathtt{F}=\sum _{j=1}^{n}X_{i}^{2}\in \mathbb{C}[X_{1},\ldots ,X_{n}]$. In particular, we prove that $U(\mathfrak{g})/K_{r}\cong \mathscr{S}(\Box ^{r})\cong {\mathcal{D}}(X)$ for a certain primitive ideal $K_{r}$. Interestingly, if (and only if) $n$ is even with $r\geqslant n/2$, then both $\mathscr{S}(\Box ^{r})$ and its natural module ${\mathcal{A}}=\mathbb{C}[\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n},\ldots ,\unicode[STIX]{x2202}/\unicode[STIX]{x2202}X_{n}]/(\Box ^{r})$ have a finite-dimensional factor. The same holds for the ${\mathcal{D}}(X)$-module ${\mathcal{O}}(X)$. We also study higher-dimensional analogues $M_{r}=\{x\in A:\Box ^{r}(x)=0\}$ of the module of harmonic elements in $A=\mathbb{C}[X_{1},\ldots ,X_{n}]$ and of the space of ‘harmonic densities’. In both cases we obtain a minimal $\mathfrak{g}$-representation that is closely related to the $\mathfrak{g}$-modules ${\mathcal{O}}(X)$ and ${\mathcal{A}}$. Essentially all these results have real analogues, with the Laplacian replaced by the d’Alembertian $\Box _{p}$ on the pseudo-Euclidean space $\mathbb{R}^{p,q}$ and with $\mathfrak{g}$ replaced by the real Lie algebra $\mathfrak{so}(p+1,q+1)$.
Khovanov–Lauda–Rouquier (KLR) algebras of finite Lie type come with families of standard modules, which under the Khovanov–Lauda–Rouquier categorification correspond to PBW bases of the positive part of the corresponding quantized enveloping algebra. We show that there are no non-zero homomorphisms between distinct standard modules and that all non-zero endomorphisms of a standard module are injective. We present applications to the extensions between standard modules and modular representation theory of KLR algebras.
We study generalized and degenerate Whittaker models for reductive groups over local fields of characteristic zero (archimedean or non-archimedean). Our main result is the construction of epimorphisms from the generalized Whittaker model corresponding to a nilpotent orbit to any degenerate Whittaker model corresponding to the same orbit, and to certain degenerate Whittaker models corresponding to bigger orbits. We also give choice-free definitions of generalized and degenerate Whittaker models. Finally, we explain how our methods imply analogous results for Whittaker–Fourier coefficients of automorphic representations. For $\text{GL}_{n}(\mathbb{F})$ this implies that a smooth admissible representation $\unicode[STIX]{x1D70B}$ has a generalized Whittaker model ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ corresponding to a nilpotent coadjoint orbit ${\mathcal{O}}$ if and only if ${\mathcal{O}}$ lies in the (closure of) the wave-front set $\operatorname{WF}(\unicode[STIX]{x1D70B})$. Previously this was only known to hold for $\mathbb{F}$ non-archimedean and ${\mathcal{O}}$ maximal in $\operatorname{WF}(\unicode[STIX]{x1D70B})$, see Moeglin and Waldspurger [Modeles de Whittaker degeneres pour des groupes p-adiques, Math. Z. 196 (1987), 427–452]. We also express ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ as an iteration of a version of the Bernstein–Zelevinsky derivatives [Bernstein and Zelevinsky, Induced representations of reductive p-adic groups. I., Ann. Sci. Éc. Norm. Supér. (4) 10 (1977), 441–472; Aizenbud et al., Derivatives for representations of$\text{GL}(n,\mathbb{R})$and$\text{GL}(n,\mathbb{C})$, Israel J. Math. 206 (2015), 1–38]. This enables us to extend to $\text{GL}_{n}(\mathbb{R})$ and $\text{GL}_{n}(\mathbb{C})$ several further results by Moeglin and Waldspurger on the dimension of ${\mathcal{W}}_{{\mathcal{O}}}(\unicode[STIX]{x1D70B})$ and on the exactness of the generalized Whittaker functor.
We show how to use Jantzen’s sum formula for Weyl modules to prove semisimplicity criteria for endomorphism algebras of $\mathbf{U}_{q}$-tilting modules (for any field $\mathbb{K}$ and any parameter $q\in \mathbb{K}-\{0,-1\}$). As an application, we recover the semisimplicity criteria for the Hecke algebras of types $\mathbf{A}$ and $\mathbf{B}$, the walled Brauer algebras and the Brauer algebras from our more general approach.
In the context of varieties of representations of arbitrary quivers, possibly carrying loops, we define a generalization of Lusztig Lagrangian subvarieties. From the combinatorial study of their irreducible components arises a structure richer than the usual Kashiwara crystals. Along with the geometric study of Nakajima quiver varieties, in the same context, this yields a notion of generalized crystals, coming with a tensor product. As an application, we define the semicanonical basis of the Hopf algebra generalizing quantum groups, which was already equipped with a canonical basis. The irreducible components of the Nakajima varieties provide the family of highest weight crystals associated to dominant weights, as in the classical case.
The trace (or zeroth Hochschild homology) of Khovanov’s Heisenberg category is identified with a quotient of the algebra $W_{1+\infty }$. This induces an action of $W_{1+\infty }$ on the center of the categorified Fock space representation, which can be identified with the action of $W_{1+\infty }$ on symmetric functions.
Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.
Suppose that a finite group G admits an automorphism of order 2n such that the fixed-point subgroup of the involution is nilpotent of class c. Let m = ) be the number of fixed points of . It is proved that G has a characteristic soluble subgroup of derived length bounded in terms of n, c whose index is bounded in terms of m, n, c. A similar result is also proved for Lie rings.
We prove that the group of automorphisms of the Lie algebra DerK(Qn) of derivations of the field of rational functions Qn = K(x1, . . ., xn) over a field of characteristic zero is canonically isomorphic to the group of automorphisms of the K-algebra Qn.
In a previous paper, we studied the homogenized enveloping algebra of the Lie algebra sℓ(2,ℂ) and the homogenized Verma modules. The aim of this paper is to study the homogenization $\mathcal{O}$B of the Bernstein–Gelfand–Gelfand category $\mathcal{O}$ of sℓ(2,ℂ), and to apply the ideas developed jointly with J. Mondragón in our work on Groebner basis algebras, to give the relations between the categories $\mathcal{O}$B and $\mathcal{O}$ as well as, between the derived categories $\mathcal{D}$b($\mathcal{O}$B) and $\mathcal{D}$b($\mathcal{O}$).
In this note, we give a new simple construction of all maximal abelian ideals in a Borel subalgebra of a complex simple Lie algebra. We also derive formulas for dimensions of certain maximal abelian ideals in terms of the theory of Borel de Siebenthal.
Volume-preserving algorithms (VPAs) for the charged particles dynamics is preferred because of their long-term accuracy and conservativeness for phase space volume. Lie algebra and the Baker-Campbell-Hausdorff (BCH) formula can be used as a fundamental theoretical tool to construct VPAs. Using the Lie algebra structure of vector fields, we split the volume-preserving vector field for charged particle dynamics into three volume-preserving parts (sub-algebras), and find the corresponding Lie subgroups. Proper combinations of these subgroups generate volume preserving, second order approximations of the original solution group, and thus second order VPAs. The developed VPAs also show their significant effectiveness in conserving phase-space volume exactly and bounding energy error over long-term simulations.
Let $G$ be a simple simply connected algebraic group over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. We discuss various properties of nilpotent orbits in $\mathfrak{g}$, which have previously only been considered over $\mathbb{C}$. Using computational methods, we extend to positive characteristic various calculations of de Graaf with nilpotent orbits in exceptional Lie algebras. In particular, we classify those orbits which are reachable as well as those which satisfy a certain related condition due to Panyushev, and determine the codimension of the derived subalgebra $[\mathfrak{g}_{e},\mathfrak{g}_{e}]$ in the centraliser $\mathfrak{g}_{e}$ of any nilpotent element $e\in \mathfrak{g}$. Some of these calculations are used to show that the list of rigid nilpotent orbits in $\mathfrak{g}$, the classification of sheets of $\mathfrak{g}$ and the distribution of the nilpotent orbits amongst them are independent of good characteristic, remaining the same as in the characteristic zero case. We also give a comprehensive account of the theory of sheets in reductive Lie algebras over algebraically closed fields of good characteristic.