To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
At the beginning of the twenty-first century, no environmental issue is of such truly global magnitude as the issue of climate change. The poorer, developing countries are the least equipped to adapt to the potential effects of climate change, although most of them have played an insignificant role in causing it. African countries are amongst the poorest of the developing countries. This book presents the issues of most relevance to Africa, such as past and present climate, desertification, biomass burning and its implications for atmospheric chemistry and climate, energy generation, sea-level rise, ENSO-induced drought and flood, adaptation, disaster risk reduction, the UNFCCC and Kyoto Protocol (especially the Clean Development Mechanism), capacity-building, and sustainable development. It provides a comprehensive and up-to-date review of these and many other issues, with chapters by the leading experts from a range of disciplines. Climate Change and Africa will prove to be an invaluable reference for all researchers and policy makers with an interest in climate change and Africa.
This book tracing the foundations of modern British geography is based upon the first-hand recollections of some of those active in the discipline between the wars and after. The contributors show how geography evolved from fragile institutional foundations in British universities, and how from the outset the subject generated both controversy and considerable diversity of opinion. The volume discusses not only the growth of geography as a specific academic discipline but also the relationship between geography and national planning that played such an important role in post-war reconstruction. Two younger scholars, trained as geographers in the years after the Second World War, assess the significance of this period in the context of the state of geographical knowledge in Britain.
This chapter explores the vulnerability of two areas, located in central and eastern Massachusetts (Figures 11.1 and 11.4), to the effects of drought. Consistent with the dominant trend in the climate change and global environmental change literatures, we define vulnerability in terms of three principal dimensions: exposure, sensitivity, and adaptive capacity (Turner et al.,2003; Parry et al. 2007). This chapter explores the exposure and sensitivity of the region by referencing the local climate, social and biophysical landscapes, and human drivers of landscape change. Adaptive capacity is discussed in terms of the factors associated with, on the one hand, groups of people and elements of the social power structure (e.g., government), and, on the other hand, individual people and small groups of individuals. These two sets of factors are termed, respectively, structure and agency. Understanding structure and agency is important for understanding the vulnerability of different places, or of a given place over a period of time.
This chapter consists of a vulnerability assessment of the Central Massachusetts study site, completed in 2004, and of the Eastern Massachusetts study site, completed in 2005. The later research builds on the earlier research. Each case study starts with a description of local changes in land- and water-use patterns, and ends with a description of exposure, sensitivity, and adaptive capacity (i.e., vulnerability), with a special focus on the relative roles of structure and agency.
Vulnerability is a concept that captures the dynamic interactions between complex human systems and complex environmental systems. Thus, a vulnerability assessment that produces a static view of human–environment interactions (i.e., by examining one place at one time) will likely provide only limited – and potentially misleading – insight into how the coupled system works. Of course, such static pictures are common in this research domain because it is challenging to establish the temporal evolution of vulnerability (i.e., one place or many places over time). Especially in the context of having limited resources to conduct a vulnerability assessment, a solution to this challenge is to ignore variations over time in favor of examining variations over geographic space (i.e., many places at one time; see Mendelsohn et al. 1994; Carbone 1995; Polsky 2004). We argue that executing a many-places-at-one-time approach requires that all the places adopt a common research protocol; to our knowledge such a networked vulnerability assessment has yet to be reported in the literature. In this chapter, we report results from our effort to examine vulnerabilities – using a rapidly executable and commonly executed methodology – in four distinct study sites in the United States.
As explained in Chapter 1, the HERO project sought to develop infrastructure for studying and monitoring human–environment interactions at individual sites and to enable cross-site comparisons and generalizations. To test how well these concepts and tools work in practice, the project addressed the question, “How does land-use change influence vulnerability to droughts and floods?
Humans acting to change Earth away from hypothetical pristine conditions is one of three key themes on human–environment relationships identified in Clarence Glacken's (1967) classic work, Traces on the Rhodian Shore. A century earlier, George Perkins Marsh (1864) helped create awareness and elucidate concerns regarding the nature and magnitude of human-induced changes to the planet. More recent compilations (e.g., Thomas 1956; Turner et al. 1990a; Foley et al. 2005) have continued to expand our knowledge of the complex and multiple pathways in which human actions alter the Earth system.
A key issue in human dimensions of global change research (NRC 1999) and in sustainability science (Kates et al. 2001) is a need to understand how the specifics of human structure and agency interact (Sorrensen et al. 2005) with the natural environment in disparate places. In theory, local transformations could then be accumulated to produce the cumulative impact on the planet (Turner et al. 1990b; NRC 1992). What similarities and differences exist in the human activities, what are the socioeconomic drivers of those activities, and what are the impacts of those activities in forested, grassland, and desert environments? And, how can scholars compare and contrast these human actions in areas where very different natural resources and settlement histories exist?
The HERO transect of North American research sites, from humid central Massachusetts and central Pennsylvania, to semi-arid southwestern Kansas, to the arid border region between Arizona and Sonora, provides the opportunity for a comparative examination of human–environment interactions over time – especially those forces that have altered land cover and land use.
The global change literature has experienced a significant, growing interest in vulnerability since the early 1990s. Although a host of authors have provided overarching conceptual discussions of vulnerability, they have largely ignored methodological issues. Consequently, several papers have recently addressed the topic of operationalizing vulnerability. Despite this growing number of vulnerability studies privileging methodology, we are unaware of published papers tackling the challenge of how to conduct a coordinated vulnerability assessment in multiple places. The HERO project, with this chapter, responds to that gap in the literature.
By addressing the topic of replicable protocols, the HERO project seeks to advance the science of vulnerability. Coupled human–environment systems are dynamic, which means that the vulnerability estimated at one point in time or space may not be a faithful predictor of vulnerability at a later point in time or another point in space. Therefore, as argued elsewhere in similar contexts (e.g., Chapter 5 of this volume; Redman et al. 2004; Gragson and Grove 2006; Haberl et al. 2006; Polsky et al. 2007), replicable protocols must be consistently applied to vulnerability assessments over time and space to develop a database sufficiently sensitive to distinguish trends from anomalies. Thus, HERO is aiming to contribute to a larger discussion on scientific infrastructure development (see Chapters 1, 3, and 5).
In the remainder of this chapter, we first elaborate on methodological issues associated with conducting vulnerability assessments in the context of a multi-site network.
The vision: sustainable communities on a sustainable planet
Imagine a world where nature and society coexist in a healthy symbiosis, where human impacts on the environment are minimal, and where communities are safe from natural and technological hazards. Imagine a time when scientists can monitor such sustainable human–environment interactions, when they can interactively share and compare data, analyses, and ideas about those interactions from their homes and offices, and when they can collaborate with local, regional, and international colleagues and stakeholders in a global network devoted to the environmental sustainability of their communities and of the planet.
We contend that to build the sustainable world portrayed above, it is necessary to develop an infrastructure that will support such an edifice. Consequently, this chapter introduces our ideas about the infrastructure needed to realize this vision and how the Human–Environment Regional Observatory project (HERO) attempted to take the initial steps to develop that infrastructure. The chapter also demonstrates that HERO addressed several major growth areas of twenty-first-century science – complex systems, interdisciplinary research, usable knowledge/usable science, and transdisciplinarity – as integral parts of its infrastructure development. The chapter ends by laying out the rationale behind and structure of this book.
Achieving the vision: infrastructure development and HERO
Infrastructure for monitoring global change in local places
To paraphrase the American politician Tip O'Neill, “all global change is local.” On the one hand, anthropogenic global environmental change is the accumulated result of billions of individual actions occurring at billions of specific locations.
One of the primary goals for HERO was to provide a knowledge management system for interdisciplinary research that also provides a link between human understanding and formal systems, for example databases, analyses, and models. Chapter 2 elaborated extensively on how concepts that people create and use in their attempts to understand and manage Earth's dynamic systems are defined differently depending on place and situation. It was specifically pointed out that it is of particular importance for multidisciplinary research such as HERO to articulate how concepts and understanding change with context. While Chapter 3 demonstrated progress made in developing support for the process of collaboratory research this chapter addresses representational issues involved in linking human understanding with formal systems. We present two ways of modeling knowledge about both the conceptual understanding of human–environment interaction and the process of decision-making.
A parameterized representation of uncertain conceptual spaces
The collaboratory Web portal (Chapter 2) embodies the idea of a customizable window onto distributed resources and ways to make these accessible to a group of users. For a portal to be able to filter and customize the content to a specific user community, one of the critical components to any such solution is a metadata structure that describes and represents available resources. The goal is to enable users to exchange methods, data, ideas, and results. Most results presented in this book were achieved by negotiating a common understanding, adhering to a shared vocabulary, and using a common set of methods.
Among the four areas investigated as part of the HERO project, semi-arid southwestern Kansas is the most reliant on agriculture. This region faces far different issues with respect to land-use/land-cover change, vulnerability to environmental stress (including hydroclimatic variability and change), and sustainability than do densely settled areas and those locales with low economic reliance on agriculture. In both this region and other non-urban parts of the country, populations in many rural counties and small towns are declining, adjustments to economic globalization are taking place, and fluctuations in forcing by coupled human and natural systems are continuing to affect agricultural success. Changes faced by farming regions also vary among those places with generally sufficient rainfall to grow most important crops, those that receive little rain and lack supplemental sources of water, those reliant on renewable surface water sources, and those reliant on declining groundwater sources. Much of southwestern Kansas is reliant on declining groundwater resources, but some areas lack sufficient ground and/or surface water for use in farming.
The name High Plains–Ogallala (HPO-)HERO recognizes this agricultural region's physical identity and its reliance on the Ogallala and other aquifers. Over the last 30 years, the research site has developed a rich literature that connects the people and land of southwestern Kansas (e.g., Worster 1979; Warren et al. 1982; Reisner 1986; Sherow 1990; Kromm and White 1992, 2001; White 1994; White and Kromm 1995; Opie 2000; Bloomquist et al. 2002; Harrington et al. 2003; Broadway and Stull 2006).
In a world connected by networks that enable instant transmission of voices, images, and data, environmental science is changing in ways that bring researchers, students, decision-makers, and citizens closer than ever before. Realizing the potential of this connected world depends on building an infrastructure, both technological and human, that enables effective interaction.
Why is infrastructure necessary? Local actions have global impacts, and global changes have local effects. Understanding the full complexity of environmental problems depends on the ability of researchers, students, decision-makers, and stakeholders to work across the continuum of scales that characterize the causes of and responses to environmental change (Association of American Geographers Global Change in Local Places Research Team 2003; Kates and Wilbanks 2003). A primary goal for a flourishing HERO network would be to build the information resources to support long-term scientific research partnerships needed to understand these changes. For the data collection and analysis efforts of a HERO network to succeed, geospatial technology and methods that are developed and implemented must meet two goals. First, the technology and methods must facilitate context- and task-sensitive encoding of data in, and retrieval of data from, the very large and complex data warehouses that will develop. Second, the technology and methods must support collaboration among scientists at different HEROs as they work together on common problems.
Vulnerability has emerged in recent years as one of the central organizing concepts for research on global environmental change (e.g., Downing 2000; O'Brien and Leichenko 2000; Turner et al. 2003; Schröter et al. 2005; Parry et al., 2007). This concept is appealing because it is inclusive. From this perspective, humans and the natural environment are not independent systems, homogeneous and unable to adapt to threats, be they anticipated, realized, or perceived but not realized. Instead, human and natural systems are viewed as intimately coupled, and differentially exposed, sensitive, and adaptable to threats. This logic, followed to its natural conclusion, means that adopting a “vulnerability” perspective demands a thorough investigation of biophysical, cognitive, and social dimensions of human–environment interactions. Strictly speaking, to conduct a vulnerability assessment means that no element of the human–environment system may be simplified away or considered a mere boundary condition.
This conceptual inclusiveness complicates the analytical task (compared to the simpler impacts-only approach), which partially explains why there are few, if any, studies that deeply engage this vast set of intellectual dimensions. This inclusiveness also raises important methodological questions. Consider two vulnerability assessments that examine local-scale vulnerabilities associated with hydroclimatic variability. Mustafa (1998) examines flood-related vulnerabilities in five Pakistani farming communities; Hill and Polsky (2005) assess drought-related vulnerabilities in ten non-farming Massachusetts (USA) towns. Can the vulnerability indicators produced by these assessments be easily compared such that potential common findings on how exposure, sensitivity, and adaptive capacity contribute to local vulnerabilities may be identified?
The Sonoran Desert Border Region HERO consists of two watersheds, the Santa Cruz River and the San Pedro River, as well as the counties and municipalities predominantly situated in these watersheds. Both watersheds straddle the United States–Mexico border with their rivers flowing north from Sonora, Mexico into Arizona, United States. On the Arizona side, Santa Cruz and Cochise Counties reside mainly in these basins and rely on the groundwater sources within the basins. On the Sonoran side, there are five municipalities: Nogales and Santa Cruz in the Santa Cruz Basin, and Cananea, Naco, and Agua Prieta in the San Pedro Basin. Most of the population in this border region lives in two urban transborder communities: Nogales, Arizona and Nogales, Sonora, situated on the western side of the study area and together referred to as Ambos Nogales; and Douglas, Arizona and Agua Prieta, Sonora situated on the eastern side. A third transborder community, Naco, Arizona and Naco, Sonora, located just west of Douglas/Agua Prieta, is very small. Other settlements of significant size dot the region, including Sierra Vista, Rio Rico, Douglas, and Benson on the Arizona side, and Santa Cruz and Cananea on the Sonoran side (Figure 14.1).
The Sonoran Desert Border Region is semi-arid to arid, with summer temperatures frequently reaching over 104°F (40°C). The region experiences bimodal winter/summer precipitation patterns resulting from midlatitude frontal systems in winter and from thunderstorms within the regional North American monsoon circulation in summer (Adams and Comrie 1997; Sheppard et al. 2002).