To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The application of continuous-scan integration to collect X-ray diffraction data with a Si strip X-ray detector (CSI-SSXD) introduces additional effects on the peak shift and deformation of peak shape caused by the equatorial aberration. A deconvolutional method to correct the effects of equatorial aberration in CSI-SSXD data is proposed in this study. There are four critical angles related to the effects of spillover of the incident X-ray beam from the specimen face in the CSI-SSXD data. Exact values of cumulants of the equatorial aberration function are efficiently evaluated by 4 × 4 point two-dimensional Gauss–Legendre integral. A naïve two-step deconvolutional method has been applied to remove the effects of the first and third-order cumulants of the equatorial aberration function from the observed CSI-SSXD data. The performance of the algorithm has been tested by analyses of CSI-SSXD data of three LaB6 powder specimens with the widths of 20, 10, and 5 mm, collected with a diffractometer with the goniometer radius of 150 mm.
A ternary compound Al3CoNd2 was synthesized and its crystal structure parameters were determined by the Rietveld refinement method based on powder X-ray diffraction data. Results show that the compound crystallizes in the MgCu2-type structure (cubic Laves C15 phase, space group $Fd\bar{3}m$), with the lattice parameter of a = 7.8424(2) Ǻ, unit-cell volume of V = 482.33 Å3, and calculated density of Dcalc = 5.90 g.cm−3. The residual factors converge to Rp = 0.1024 and Rwp = 0.1287. The reference intensity ratio value obtained experimentally is 3.03. Magnetic susceptibility measurements indicate an agreement with the Curie–Weiss law in the temperature range of 385–450 K, and paramagnetic Curie temperature of θp = 379.9 K. Both rare-earth elements and cobalt ions contribute to the paramagnetic moment. The saturation magnetic moment and magnetic hysteresis loop were measured for the Al3CoNd2 compound at various temperatures. Results show that the saturation magnetic moment value decreases with an increase in temperature and the compound becomes a ferromagnet below the Curie temperature Tc.
Herein, we report the synthesis and characterization of a novel class of polymer composites based on onion-like carbons (OLCs)-silicon diimide by a salt-free polycondensation reaction. The pyridine-catalyzed polymerization reaction was carried out in the presence of various contents (0.1, 0.5, 1, and 2 wt%) of carboxyl-functionalized OLCs in argon atmosphere to provide composites with well-dispersed and covalently incorporated 0D nanocarbons throughout the 3D matrix of silicon diimide polymer. A strong dependency of the optical properties (UV absorbance and the photoluminescence spectra) on the content of functionalized OLCs incorporated within the polymer matrix was observed. The novel polymer composites are suitable precursors for the design of advanced and multifunctional 0D-nanocarbon–containing Si3N4-based ceramic nanocomposites.
Philippine natural bentonite is characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), chemical analysis, thermogravimetric-differential scanning calorimetry (TG-DSC), and Fourier transform infrared (FTIR) analysis. The cation exchange capacity (CEC) was also measured. XRD shows that the mineral is composed primarily of mordenite, hectorite, and montmorillonite. SEM shows the flaky and porous structure of the bentonite powder. Chemical analyses show that SiO2 (47.90 wt%) and Al2O3 (14.02 wt%) are the major components of the clay. TG-DSC shows that the mineral contains 15.55% moisture. IR transmittance spectrum shows the common vibration bands present in the sample which include O–H stretching of inter-porous water, symmetric and asymmetric stretching of hydroxyl functional groups, asymmetrical stretching of internal tetrahedra (O–Si–O and O–Al–O), symmetrical stretching of external linkages, and so on. The measured CEC were found to be 91.37 and 43.01 meq/100 g according to the ammonium acetate method and barium acetate method, respectively.
Radars used to observe meteor trails in the mesosphere deliver information on winds and temperature. Use of these radars is becoming a standard method for determining mesospheric dynamics and temperatures worldwide due to relatively low costs and ease of deployment. However, recent studies have revealed that temperatures may be overestimated in conditions such as high geomagnetic activity. The effect is thought to be most prevalent at high latitude, although this is not yet proven. Here, we demonstrate how temperatures might be corrected for geomagnetic effects; the demonstration is for a particular geographic location (Svalbard, 78°N, 16°E) because it is local geomagnetic disturbances that affects local temperature measurements, therefore requiring co-located instruments. We see that summer temperatures require a correction (reduction) of a few Kelvin, but winter estimates are more accurate.
There is dearth information on the role of fisetin as an antistress agent in ameliorating heat stress in broiler chickens. Here, we experimentally compared probiotic, an antioxidant and antistress agent, with fisetin, an antioxidant agent with little or no report on its antistress effect. Sixty-day-old broiler chickens (Arbo Acre breed) were allotted into 4 groups of 15 birds each as follows; control, fisetin, probiotic, and fisetin + probiotic groups, respectively. All administrations were performed orally through gavage for the treatment groups. The environmental and cloacal temperature (CT) parameters were measured bi-hourly at Days 21, 28, and 35 from 7:00 to 7:00 hr, during the period of study. The environmental parameters exceeded the thermoneutral zone for broiler chickens. The probiotic-supplemented group had the least overall mean CT values all through the experimental period. Based on our findings, fisetin was not a potent antistress agent in mitigating heat stress in birds.
The experiment investigated the effects of dietary ascorbic acid and betaine stress responses, serum testosterone levels, and some sexual traits in male Japanese quails during the dry season. A total of 240 male Japanese quails (14 days old) were used and randomly assigned to four groups, each group has three replicates (n = 20). Birds in treatment groups were fed ascorbic acid (AA); betaine (BET); and AA + BET in their diets, whereas the control birds were fed only basal diet. Environmental conditions were predominantly outside thermoneutral zone for Japanese quails. Dietary AA ± BET increased (p < .05) serum catalase, reduced glutathione and testosterone, but lowered (p < .05) cortisol levels when compared with control group. Supplemental AA, BET, or AA + BET enhanced (p < .05) cloacal gland size and sexual traits. In conclusion, dietary AA and BET improved stress responses, serum testosterone levels, and some sexual traits in male Japanese quails during the dry season.
The structural parameters of a second low-temperature form of KZnPO4 have been refined using Rietveld analysis of X-ray powder diffraction (XRPD) data. This form of KZnPO4 is isostructural with NH4ZnPO4I and has previously been denoted as KZnPO4II. This article uses the notation δ-KZnPO4, to be consistent with the α, β, and γ notation commonly used for other KZnPO4 phases.
We review a combinatoric approach to the Hodge conjecture for Fermat varieties and announce new cases where the conjecture is true. We show the Hodge conjecture for Fermat fourfolds $ {X}_m^4 $ of degree m ≤ 100 coprime to 6, and also prove the conjecture for $ {X}_{21}^n $ and $ {X}_{27}^n $, for all n.
In this study we compared radiation dose received by organs at risk (OARs) after breast conservation surgery(BCS) and mastectomy in patients with left breast cancer.
Materials and methods
Total 30 patients, 15 each of BCS and mastectomy were included in this study. Planning Computerised Tomography (CT) was done for each patient. Chest wall, whole breast, heart, lungs, LAD, proximal and distal LAD, and contra lateral breast was contoured for each patient. Radiotherapy plans were made by standard tangent field. Dose prescribed was 40Gy/16#/3 weeks. Mean heart dose, LAD, proximal and distal LAD, mean and V5 of right lung, and mean, V5, V10 and V20 of left lung, mean dose and V2 of contra lateral breast were calculated for each patient and compared between BCS and mastectomy patients using student’s T test.
Results
Mean doses to the heart, LAD, proximal LAD and distal LAD were 3.364Gy, 16.06Gy, 2.7Gy, 27.5Gy; and 4.219Gy, 14.653Gy, 4.306Gy, 24.6Gy, respectively for mastectomy and BCS patients. Left lung mean dose, V5, V10 and V20 were 5.96Gy, 16%, 14%, 12.4%; and 7.69Gy, 21%, 18% and 16% in mastectomy and BCS patients, respectively. There was no statistical significant difference in the doses to the heart and left lung between mastectomy and BCS. Mean dose to the right lung was significantly less in mastectomy as compared to BCS, 0.29Gy vs. 0.51Gy, respectively (p = 0.007). Mean dose to the opposite breast was significantly lower in patients with mastectomy than BCS (0.54Gy Vs 0.37Gy, p = 0.007). The dose to the distal LAD was significantly higher than proximal LAD both in BCS (24.6Gy Vs 4.3Gy, p = <0.0001) and mastectomy (27.5Gy Vs 2.7Gy, p = <0.0001) patients.
Conclusion
There was no difference in doses received by heart and left lung between BCS and mastectomy patients. Mean doses to the right lung and breast were significantly less in mastectomy patients.
For the measurement of flow-induced microrotations in flows utilizing the depolarization of phosphorescence anisotropy, suitable luminophores are crucial. The present work examines dyes of the xanthene family, namely Rhodamine B, Eosin Y and Erythrosine B. Both in solution and incorporated in particles, the dyes are examined regarding their luminescent lifetimes and their quantum yield. In an oxygen-rich environment at room temperature, all dyes exhibit lifetimes in the sub-microsecond range and a low intensity signal, making them suitable for sensing fast rotations with sensitive acquisition systems.
The crystal structure of donepezil hydrochloride, form III, has been solved with FOX using laboratory powder diffraction data previously submitted to and published in the Powder Diffraction File. Rietveld refinement with GSAS yielded monoclinic lattice parameters of a = 14.3662(9) Å, b = 11.8384(6) Å, c = 13.5572(7) Å, and β = 107.7560(26)° (C24H30ClNO3, Z = 4, space group P21/c). The Rietveld-refined structure was compared to a density functional theory (DFT)-optimized structure, and the structures exhibit excellent agreement. Layers of donepezil molecules parallel to the (101) planes are maintained by columns of chloride anions along the b-axis, where each chloride anion hydrogen bonds to three donepezil molecules each.
Quaternary selenide, Pb4In2.6Bi3.4Se13 (x = 2.4 member of the Pb4(InxBi6-xSe13 solid solution), was synthesized by a solid-state technique, and its structure was determined using powder X-ray diffraction (XRD). Pb4In2.6Bi3.4Se13 crystallizes in the orthorhombic space group Pbam (No. 55) with Z = 4. Lattice parameters and calculated density were determined to be a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å3, and Dx = 7.490 g cm−3. The structure consists of Z-shaped ribbon units and corner-shared infinite one-dimensional [InSe4]∞ chains running parallel to the c-axis. The chains and ribbons are further connected by Pb atoms to form a three-dimensional network. Pb atoms are situated in the center of bicapped trigonal prisms. The compound exhibits a semiconductor feature. The Seebeck coefficient of Pb4In2.6Bi3.4Se13 was found to be −180 μV K−1 at 295 K and −380 μV K−1 at 600 K. Combining the values of Seebeck coefficient, electrical conductivity, and thermal conductivity yield a figure of merit, ZT, of about 0.175 at 700 K. The powder XRD pattern of Pb4In2.6Bi3.4Se13 was also determined.
The crystal structure of daclatasvir dihydrochloride Form N-2 (Daklinza®) has been refined using synchrotron X-ray powder diffraction data and optimized using density functional theory techniques. Daclatasvir dihydrochloride, Form N-2, crystallizes in space group P1 (#1) with a = 7.54808 (15), b = 9.5566 (5), c = 16.2641 (11) Å, α = 74.0642 (24), β = 84.0026 (13), γ = 70.6322 (5)°, V = 1064.150(11) Å3, and Z = 1. The hydrogen bonds were identified and quantified. Strong N–H⋯Cl hydrogen bonds link the cations and anions in chains along the a-axis. The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).