Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T22:48:16.503Z Has data issue: false hasContentIssue false

Structural and thermoelectric properties of Pb4In2.6Bi3.4Se13

Published online by Cambridge University Press:  02 July 2021

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, USA
J. Guo
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei430070, China
Y. Yan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei430070, China
J. A. Kaduk
Affiliation:
Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois60616, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

Quaternary selenide, Pb4In2.6Bi3.4Se13 (x = 2.4 member of the Pb4(InxBi6-xSe13 solid solution), was synthesized by a solid-state technique, and its structure was determined using powder X-ray diffraction (XRD). Pb4In2.6Bi3.4Se13 crystallizes in the orthorhombic space group Pbam (No. 55) with Z = 4. Lattice parameters and calculated density were determined to be a = 22.152(5) Å, b = 27.454(5) Å, and c = 4.1354(6) Å, V = 2515.0(11) Å3, and Dx = 7.490 g cm3. The structure consists of Z-shaped ribbon units and corner-shared infinite one-dimensional [InSe4] chains running parallel to the c-axis. The chains and ribbons are further connected by Pb atoms to form a three-dimensional network. Pb atoms are situated in the center of bicapped trigonal prisms. The compound exhibits a semiconductor feature. The Seebeck coefficient of Pb4In2.6Bi3.4Se13 was found to be −180 μV K−1 at 295 K and −380 μV K−1 at 600 K. Combining the values of Seebeck coefficient, electrical conductivity, and thermal conductivity yield a figure of merit, ZT, of about 0.175 at 700 K. The powder XRD pattern of Pb4In2.6Bi3.4Se13 was also determined.

Type
Technical Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berlepsch, P., Armbruster, T., Makovicky, E., Hejny, C., Topa, D., and Graeser, S. (2001). “The crystal structure of (001) twinned xilingolite, Pb3Bi2S6,” Can. Mineral. 39, 16531663.CrossRefGoogle Scholar
Choi, K. S., Chung, D.-Y., Mrotzek, A., Brazis, P., Kannewurf, C. R., Uher, C., Che, W., Hogan, T., and Kanatzidis, M. G. (2001). “Modular construction of A1+xM4-2xM′7+xSe15 (A=K, Rb; M=Pb,Sn; M′=Bi,Sb): a new class of solid state quaternary termoelectric compounds,” Chem. Mater. 13, 756764.CrossRefGoogle Scholar
Chung, D-Y, Hogan, T., Brazis, P., Rocci-Lane, M., Kannewurf, C., Bastea, M., Uher, C., and Kanatzidis, M. G. (2000). “CsBi4Te6: a high-performance thermoelectric material for low-temperature applications,” Science 287, 10241027.CrossRefGoogle Scholar
Derakhshan, S., Asson, A., Taylor, N. J., and Kleinke, H. (2006). “Crystal and electronic structures and physical properties of two semiconductors Pb4Sb6Se13 and Pb6Sb6Se17,” Intermetallics 14, 198207.CrossRefGoogle Scholar
Edenharter, A. (1980). “Die Kristallstruktur von Heteromorphit, Pb7Sb8S19,” Z. Kristallogr. 151, 193202.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak symmetry due to axial divergence,” J. Appl. Crystallogr. 27, 892900.CrossRefGoogle Scholar
Gates-Rector, S. D. and Blanton, T. N. (2019). “The Powder Diffraction File: a quality materials characterization database,” Powder Diffr. 34, 352360.CrossRefGoogle Scholar
Hsu, K. F., Loo, S., Guo, F., Chen, W., Dyck, J. S., Uher, C., Hogan, T., Polychroniadis, E. K., and Kanatzidis, M. G. (2004). “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit,” Science 303, 818821.CrossRefGoogle Scholar
Kanatzidis, M. G., McCarthy, T. J., Tanzer, T. A., Chen, L.-H., and Iordanidis, L. (1996). “Synthesis and thermoelectric properties of the new ternary bismuth sulfides KBi6.33S10 and K2Bi8S3,” Chem. Mater. 8, 14651474.CrossRefGoogle Scholar
Matzat, E. (1979). “Cannizzarite,” Acta Crystallogr. B Struct. Sci. 35, 133136.CrossRefGoogle Scholar
Nuffield, E. W. (1975). “The crystal structure of fülöppite, Pb3Sb8S15,” Acta Crystallogr. B Struct. Sci. 31, 151157.CrossRefGoogle Scholar
Olsen, L. A., Balic-Zunic, T., Makovicky, E., Ullrich, A., and Miletich, R. (2007). “Hydrostatic compression of galenobismutite (PbBi2S4): elastic properties and high-pressure crystal chemistry,” Phys. Chem. Miner. 34(7), 467475.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rowe, D. M. (1995). CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL).CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Slater, J. C. (1964). “Atomic radii in crystals,” J. Chem. Phys. 41, 3199. Bibcode: 1964JChPh..41.3199S. doi:10.1063/1.1725697.CrossRefGoogle Scholar
Takeuchi, Y., Takagi, J., and Yamanaka, T. (1974). “The crystal structure of PbS• 2Bi2S3,” Proc. Japan Acad. 50, 317321.CrossRefGoogle Scholar
Toby, B. H. and Von Dreele, R. B. (2013). “GSAS-II: the genesis of a modern open-source all purpose crystallography software package,” J. Appl. Crystallogr. 46(2), 544549.CrossRefGoogle Scholar
Wang, M. F., Huang, W. H., and Lee, C. S. (2009). “Synthesis and phase width of quaternary selendides Pb4InxBi6-xSe13 (M=Bi, x=2.1–2.8; Sb, x=2),” Inorg. Chem. 48, 64026408.CrossRefGoogle Scholar